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Artificial Gravity Assessment Study

1

I

1 .

This section assesses the STCAEM reference vehicles' (CAB, NTR, SEP and

NEP) adaptability to artificial gravity (ga). Penalties for each case are presented with a final

mass comparison. Human factors assumptions for the study am based on historical studies

on human adaptabilitytoartificialgravity.

The CAB configurationemploys a planar beam armature with threeconductive,

ribbon-sectiontethers.Communications and power axe located,despun, at the CM for

constantcrackingcapabilities.The CAB configurationhas approximately a 15 % mass

penalty over the _tg versionbecause of the added components and propellantrequired.

Packaging theundeployed reel/crawlermechanisms requiresaslightlylargeracrobrakethan

for the _tg case. Ifthe MTV acrobrakeisnot retained(thatis,fornon-reusablemission

scenarios),a very long tethersystem (> 2 kin)isrequiredon thereturntrip.

The NTR configurationistheleastaffectedby axtificialgravityrequirements.The

main change in the artificialgravityconfigurationisa lengthened trussto allow a 56 m

radiusto the transferhab. The drop tanks are positionedatthe CM so thatthe centerof

rotationdoes not move as they aredropped; no deployable trussor tetherisneeded. The

mass penalty for the NTR artificialgravity vehicle is on the order of less than or

equal 10 %.

Artificialgravityforcontinuous thrustsystems (SEP and NEP) isnot as simple as

forcryo and nuclearthermal systems because of the "spinning-while-thrusting"problem.

Eitherhigh power spin-joints,or cross-productengine assembliestendto be required.A

possiblesolutionto thisproblem isto flyin ttg for most of the nip,spinningup only at

mid-course no-thxustintervalsand upon arrivalatMars. On conjunctionclassmissions,

where staytimes atMars axe up to 600 days,the vehiclecan be spun-up in Mars orbitto

reconditionthe crew priorto landing. 7 SEP and 2 NEP optionshave been evaluated,

and a new concept has been selected,calledan eccentricrotator.This avoids virtuallyall

ga penaltiesfor SEP, but stillrequites high-power rollrings for NEP. Preliminary

estimatesof mass penaltiesforF_.Pvehiclesareof order 5 %.
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Cryogenic/Aerobrake Vehicle

Artificial Gravity Configuration

The CAB artificial gravity configuration uses tethers to achieve the 56 m spin

radius required to produce Ig at 4 rpm. This rotation rate is currently the maximum

thought allowable to avoid transient vestibular disturbances for most people. The tethers

used are conductive tethers to simplify the mechanics of power transmission from a dvspun

photovoltaic array to the end-mass vehicles. The tether is "ribbon" shaped to reduce the

possibility of entanglement during the reeling cycles, to beuer facilitate "crawler"

operations, and because it radiates heat (generated resistively during power transmission)

bett_ than a circular cross-section of the same sectional area.

v

J,

The configuration is a planar 'ibeam" arrangement of three tethers, with crawlers

and despun solar array and communications laser located at the CM. The MTV propulsion

system is split symmetrically, forming a yoke around the habitat system. This allows the

habitat system to be detached and removed simply fiorn it original position. Post-TMI, the

transferhab separatesin thismanner, remaining contiguouslyconnected with theMEV; the

MTV aerobrake and TEl propellantbecome the ga countermass. The Mars to Earth

configuration uses the MTV acrobrakc and the empty TEl propellant tanks as countermass,

which necessitates a longer countcrmass radius to maintain a 56 m separation between the

crew systems and the center of rotation (CM). In a nonreusable scenario, the MTV

aerobrak_ is jettisoned at Mars; this saves TEl propellant but requires a much longer

counm'mass tether radius for the return trip: over 2 kin.

The crawler/mast/power assembly at the CM includes deployable trussesthat

separme the tethersintothewide-beam spin-configuration,yetpackage tightlyforstowage

beneath the MTV habitatsystem for p,g mission phases (includingaerobraking). The

solararrayand the communications laserareon despun jointsforindependent trackingof

thesun and Earth. The crawlermechanism isdividedintotwo sections,so thatone section

can always be atthe CM to supportthe deployable trussand the tetherwhile the otheris

performing itstransportationfunction.Each crawler has small solararraysforitsmotive

power. When stoppedattheCM, each crawlercontactsexposed portionsof thealuminum

conductors insidethe tethers,to transferpower from the solararray to the end-mass

vehicles.
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The ga CAB mass penalty, when compared to a reusable _g version, is

~ 15 %, becaus¢ of the hardware and spin-up/down propellant required to support

artificial gravity operations. Accommodating the tether r_l, crawler, solar arrays, and

communications laser below the transfer habitat requires a 32 m aerobrake, slightly larger

than the 30 m baseline CAB brake. Technology penalties include accessible-conductor

t_thers, and rotating joints for the solar array and communications laser. Operations

penalties include maintenance of the mechanical systems requi_d for ga, and the EVA

complications associated with using t_ther crawlers for end-to-end mobility.
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Nuclear Thermal Rocket Vehicle

Artificial Gravity Configuration

r

The NTR artificial gravity (ga) configuration looks exactly like the ).tg

configuration, except longer. A rigid spinner, it uses the crew systems as one end mass

and thereactor/engineas the other.The vehiclerotatesnominally at 3.98 rpm outbound

(56.5m to create lg) and 3.83 rpm inbound (61 m to create Ig). The trussused is

similarto thatin the _g configuration,but actuallycarriesweight in the induced gravity

field.The spinradiusof the habitationsystem ispracticallyconstantwith mission phase

because the Earth departureand Mars arrivaldrop-tanksare locatedatthe vehicleCM.

Four spin-up/spin-downcyclesare presumed forthenominal mission case.

The NTR vehicleconcept isthemost amenable toadaptationforartificialgravityof

any of thereferencevehicles,because its}_g and ga manifestationsare so similar.Only a

longer (perhaps stronger) truss,added RCS and TMI/TEI propellant,and dcspun

mountings forpower and communication systemsarerequired-
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Solar Electric Propulsion Vehicle

Artificial Gravity Configuration

The solar electric vehicle (SEP) artificial gravity (ga) concept presents complications

not present in the lower-performance propulsion concepts. For full-fledged ga conditions,

EP vehicles pose the problem of spinning while thrusting. [An alternative, operational

solution may bc to fly _tg for most of the trajectory, spinning only during the midflight

coast intervals (25 to 60 days) and upon arrival at Mars. For STCAEM purposes,

however, it is essential to pursue the outcome of a vehicle required to provide artificial

gravity for the entire flight.] Because the thrust vector must average tangential to the flight

path, the fundamental configuration trade-off is between rotating, high-power transfer

assemblies (for the spin vector normal to the ecliptic) and spin-vector precession (for any

other orientation).

Of the many possible configuration options identified by STCAEM, the one was

chosen that is similar both to the ktg SEP and to the NEP ga concept. This configuration

concept, called an eccentric rotator, avoids tethers, complex extendible booms or

clcployable trusses. All components arc rigid and the design is simple.

The fundan_ntal concept is that the large solar array is split in two, leaving a gap or

slot within which spins a rigid boom supporting the habitable systems. The optimal shape

of the two solar array halves has not yet be_n determined. A single, double-ended slipring

assembly (which transmits only habitation-system power levels) is used to despin the

vehicle bus. No d_ployment mechanism is required to change the habitat system separation

when the MEV mass islost.Instead,the rotationrateisadjustedto provide lg in the

centerof the long-durationhabitat,according to the habitat'sactualseparationfrom the

currentvehiclemass center,which shiftsafterMEV operations.Thus the mass centeris

not necessarilyaxiallyalignedwith the engine outriggeror geometric centerof the solar

array,althoughitalways remainsatthezenithreladvetothehabitatfloors.When themass

centerisnot along the outriggeraxis,the outriggerand solararrayalsoorbitsthe mass

center.The engine assembliesthereforetraceout circlesas theythrust,although the thrust

vectororientationremains fixed.For low-thrustsystems inparticular,thisisexpected to

cause no problems. The solararray,main structureand engine assembliesarc used as the

countermass to the crew systems.
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Nuclear Electric Propulsion Vehicle

Artificial Gravity Configuration

The nuclear electric vehicle (NEP) artificial gravity (ga) concept presents

complications not present in the NTR and CAB/CAP concepts. For full-fledged

conditions, EP vehicles pose the problem of spinning while thrusting. [An alternative,

operational solution may be to fly _g for most of the trajectory, spinning only during the

midflight coast intervals (25 to 60 days) and upon arrival at Mars. For STCAEM

purposes, however, it is essential to pursue the outcome of a vehicle required to provide

artificial gravity for the entire flight.] Because the thrust vector must average tangential to

the flight path, the fundamental configuration trade-off is between rotating, high-power

transfer assemblies (for the spin vector normal to the ecliptic) and spin-vector precession

(for any other orientation).

Of the many possible configuration options identified by STCAEM, the one was

chosen that is similar both to the ]_g NEP and to the SEP ga concept. This configuration

concept, called an eccentric rotator, avoids tethers, complex extendible booms or

deployable trusses. All components are rigid and the design is simple.

The fundamental concept is that the spine of the _tg NEP configuration is

intersected orthogonally by a lightweight, symmetrical engine outrigger. The ion engine

assembly is split between the two ends.of this outrigger, and these are despun from the rest

of the vehicle so as to remain properly oriented for thrusting throughout the flight. No

deployment mechanism is required to change the habitat system separation when the MEV

mass is lost. Instead, the rotation rate is adjusted to provide lg in the center of the long-

dragon habitat, according to the habitat's actual separation from the current vehicle mass

center, which shifts after MEV operations. Thus the mass center is not necessarily axially

aligned with the engine outrigger, although it always remains at the zenith relative to the

habitat floors. When the mass center is not along the outrigger axis, the outrigger also

orbits the mass center. The engine assemblies therefore trace out circles as they thrust,

although the thrust vector orientation remains f'txcd. For low-thrust systems in particular,

this is expected to cause no problems. The reactor/power assembly along with the primary

radiators are used as the countcrmass to the crew systems and the secondary radiators.
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MTV/MEV Mission Scenarios

This section shows several items that must be considered in mission scenarios to define

unifiedreqttimmentsfora complete mission;that iscoordinatingtheoperationsof theMTV

and MEV, particularlythoseareasthatarcofconcern toLEVEL H.

The diflicultyof a missionisdefinedby severalfactors.Thisincludesthetime frame the
mission is m be conducted;thephysical posiuoning of theplanetsdriving thedegreeof

difficultytoroach and rctmn from Mars. The totalmission AV (change of velocity)isa

good indicationof the ph.ysical"cost"of themission.Shown berearcfullmission
contoursfortwo conjuncuon classmissions(2010 and 2013) forthegiven staytimesat
Mars. The x-axis is in Julian date 245XXXX. The y-axis is in trip time, inbound or

outbound, in days. The AV minimum._ show clearly on the contours.

Arrival at Mars must also be taken into account as when the S-vector ( rcttma trajectory

vector) may be out of plane and the true anomaly is not close to pcriapsis to impose a
sizable AV penalty to acquire the traj.ector.y, home. These will be functions of the orbit
period and inclination. The informauon gaven is for the 2010 Conjunction mission shown
in the preceding chart. To further the evaluation the position of the periapsis with ..respect to
the surface ( defines access to the surface) and the lighting angle at periapsis. ( daylig.ht or

night landing) must be identified. For this case a capture period of 10 hrs. gwes a mmzmum
departure AV of approximately 1.2 kin/see for a 30 degree inclination orbit, an S-vector out
of plane by >2 degrees, a true anomaly off of periapsis by ~ 10 degrees (minimum), a
pcriapsis latitude of-,30 degrees north ( out of the expected permafrost region on the
plane0, with a periapsis lighting angle of + 40 degrees (daylight). This means that the
captm_ is in daylight, an abort possibility exists that is easily accessible, and the craft is
positionedover areasof intereston thesurface.

Once on the surface the propellant choice made for the lander and the length of surface stay,
dictate the weight of the lander. In the case shown, a minilander capable of reaching a 250
kzn orbit was used to trade the weight of the vehicle for the type of fuel used. Both storable

and cryogenicfuelswca_ employed and thecryogenicsystems accountedfortheboiloff
and theextradecentpropellantneeded tolandtheboiloffpropellant.Even at600 day

staytimeswith boiloffconsidmrxi,thecryogenicsystems tradefavorablywith thestorables.
However, sincethe atmosphere ofMars ispresent,thecryogemc systemsmust be vacuum

jackcrrxland have abortproceduresincaseof an atmosphericleakinthejacket,which
would permitCO2 icetoform mound thetank.

Tl_evaluesfortheboiloffwca'cgoncratedby using an in house Boeing program to

calculam theboiloff,and boiloffrateforvarioussize,s,with orwithoutMI.J,vapor cooled

shields,andpcra-to-orthoconversionof hydrogen.This same program was used topredict

tankpropertiesforan Extca'nalTank (ET, currentShuttle)sizedvolume and theresultant
tankmasses and tankfractionsforuse inweight estimationsforcryogenicpropellant

systems on allvehicles.
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Aerobrake Summary

This section is a summary of Aerobrake related information as it pcratins to the Boeing
work on the STCAEM contract managed by the NASA Marshall Space Flight Center. This
summary addresses the aerobrakc analyses categcnd.zed as geometric configuration for
capture and landing, Mars atmosphere knowledge uncertainty impacts on GN&C, design
configurations for reducing heating rates and loads, landing flight mechanics for range and
crossrange re_quixcments, structural techniques for reducing weight, and integration of
technology to meet overall mission goals. The aforementioned categories will be covered
in four sections: Aerocapturc, Heating, StrucRn'c, and Ascent/Descent.

Aerocapmre -CriticalGN&C relatedaerocapun'eissuesare line-of-apsidccontroland

apoapsisaltitudecontrol.Aerocapnn'canalysesresultsincludedinthissummary show the

following:

* Asymmetric rollwitha finiterateprovidesimproved lineof
apsidescontrol.

*A guidance system designed for a low density atmosphere
needs to he optimized for other atmospheric conditions.

* Using MarsGram, a one sigma density change results in a
large difference in density variation between day and night.

* The guidance system (as related to aerocapture exit
conditions) is more affected by large (wavelength > 1000 kin)
h_ntal sine wave density variations.

A largerverticalwavelength (on theorderof20 kin)sine

wave densityinducesa lessererrorthana smaller

verticalwavelength (on theorderof5 kin)sinewave

density.

Heating - Mars aerocapture heating analyses results arc given for stagnation point heating
and for some choices of stream line point heating. Heating analyses results included in this
summary indicate thefollowing:

* For the Mars aer_apture MTV, the stagnation point heating
rate resulting from averaged lift-down IJD is lower than the
healing rate for average lift-up L/D.

* Under similarconditions,the heatingloadsfollowthesame

trendasthestagnationpointheatingrate.

* Along thecenterstreamlineof thehyperboloidaerobrakethe

predictedradiativeheattransferrateatMars usingthePark

method isapproximatelytwo timesthatusingtheTauber-
Suttonmethod.

* The total heating rates at the stagnation point with Park
(146 w/sq era) and Tauber-Sutton (80 w/sq era) are higher than

the near term (1993) radiative material capabilities of

approximately 70 w/sq era.
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* For an ave_"a_gedL/D = 0.5 the stagnation point heating rate
for Mars acrocapture is 146 w/sq cm; Earth aerocapture
heating ram is 172 w/sq cm.

* The local Reynolds number along the aft su'eamiine of the
30m body does not exceed 10E6.

Structures - Structural analyses results demonstrate weight savings and su'ength
improvements through advanced composites application and through spar design
advantages. Ir_luded s_'ucua'al analyses results depict the following:

*Spar and truss configurations were developed for the 30
meter acrobra_ concept.

* For thesparconfigura6onand with currenttechnology,the
(81 mt payload)weight estimateis41.5 Idb and theMTV

(153 mt payload) estimateis66.3 klb.

* Improved material characteristics (200 ksi vs 105 ksi span
strength) reduces configuration weight by greater than
15%.

* Mass savingsof30% may bc achieved by improved spar
designand advanced matcrialscharacteristics.

Structures - (cont.)

* The truss configuration provides a 15% weight savings
compaze.d to the spar configuration.

Ascent/Descent -No ascentrelatedinformationisdiscussedinthisvcrsionof the

IP&ED; a forthcomingupda_ willcontaina discussionofascentrelateddata.

Descent traj_ analysesx_,.sultspointtoI.JDrcq_nts rclat_tolandingsite

accessibilityissues.Includeddescenttrajectoryresultsincludethefollowing:

* For MEV withL/D = 1 and descentinclinationof45 degr_s, a

displacementinlatitudeof 30 degreesmay bc achieved.

* An increase in L/D firom 0.5 to 1.0+ extends the range by
approxinmmly 50%.

* An acroflamreducestheidealdeltavelocityrequiredfor
landingby 200 to300 m/sec (L/D = I).
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INTRODUCTION

The intent of this technical note is to document a base heating environment for the
Boeing Mars hyperboloid aerobrake (L/D = 0.5). The approach used in this analysis was
to develop an empirical method for calculating the convective heating, radiative heating,

and wake closure angle.

A side view of the Mars transfer vehicle aerobrake is shown in Fig. 1. The equation

of the hyperboloid is provided with this figure. A top view of the M'FV aerobrake is

provided in Fig. 2.

The trajectory analyzed is an aerocapture trajectory in the Mars atmosphere. The

trajectory data provided by Boeing included the time, altitude, velocity, free-stream
temperature, free-stream pressure, and free-stream density. The convective, radiative,
and total heat rates at stagnation conditions on the front surface of the aerobrake were

also provided. The methodologies in this study were developed using the trajectory
conditions occurring at the times of highest heating. The trajectory data for the times of

peak heating is included in Table 1. In addition an altitude versus velocity plot.of this
trajectory is provided in Fig. 3.

BASE CONVECTION

An empirical method for calculating the base convective heating is presented in Table

2. Using this method and the geometry and trajectory information provided by Boeing for
the MTV a base convective heating environment was calculated and is shown in Fig. 4.

The sensitivity of this predicted environment to wall temperature was investigated and is
shown in Fig. 5. Note that a 556 K variation in wall temperature resulted in only a 4.8

percent variation in the peak heating rates. The sensitivity to base diameter was also

investigated and is shown in Fig. 6. Here it is shown that a 10 percent variation in the
base diameter resulted in a 1.8 percent variation in the peak heating rates. In addition
to the method selected above for calculating the base convection environment two other

independent sources were identified [Ref, 1 & 2] which indicated that base heating rates
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could be approximated as 2 percent of the front face stagnation heating. Both of these
reports were for aerobrakes in air. A comparison of the calculated base convective heat

rates with the stagnation convective heat rates shows that the base heating approaches

5.6 percent of the stagnation as shown in Fig. 7. The 5.6 percent prediction is calculated
using CO;. The heat transfer coefficient for base convection is higher for CO2 than for

air based solely on the differences in the viscosity and density, which accounts for the
major differences in the results of these two methodologies. Another source of error may

be the variety of stagnation convective heating methodologies available and used within

each of the different references. However, since the methodology recommended in Table
2 is independent of the stagnation heating methodology and is the more conservative

of the heating estimates, it is the method for calculating the base convective heating
recommended by this study.

BASE RADIATION

An empirical method for calculating the base radiative heating is presented in Table 3.

Using this method and the geometry and trajectory information provided by Boeing for
the MTV, a base radiative heating environment was calculated and is shown in Fig. 8.

The sensitivity of this predicted environment to the base diameter was investigated and
is shown in Fig. 9. Here, it is shown that a 10 percent variation in the base diameter
resulted in a 5.4 percent variation in the peak heating rates.

WAKE CLOSURE ZONE

The objective was to define the region in the base of the Boeing brake where

payloads could be placed with a minimum impact from base heating. The procedure
used to estimate this region follows that developed at REMTECH and presented-in Ref.

[3]. Calculations were performed for the peak forebody heating trajectory time of 114
seconds.

The methodology used to determine the expansion angle of the shear layer, 8s, is
as follows:

1. BLIMPK (Ref. [8]) was used to calculate the boundary layer edge properties for a
100% CO2 free-stream Martian atmosphere. REM'I'ECH extended the equilibrium

property curve fit equation range of applicability from 6,000K to 15,000K in BLIMPK

for this study. Results provided in Table 4 indicate that the specific heat ratio at the

boundary layer edge is approximately 1.11 and is neady constant throughout the

expansion to the base pressure.

2. The pressure ratio at the forebody sonic point and the sonic point flow angle, 8" are
evaluated using Lee's modified Newtonian pressure relation and an effective post

2
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shock -, of 1.1 1.
J

yielding 8" = 49.T5 °

/ ,,'\ / _,,_ - #' Layer Et_ge

Rectrculatton Zone

Flow Geometry

The nominal base pressure ratio P4/Poc is determined from the relation by Engel
(Ref. [4]) for laminar high Reynolds number wakes.

P'_ = lO[-O.lsTos+o.zosoe(,_f=-e)°"]
.e=
/'4

-- = 15.47 at time = 114 sec
P=

It is assumed that the pressure across the shear layer is identical to the pressure in
the recirculation zone, hence P4/P1 = P3/PI.

P'/P3 is computed from steps 2 and 3.

Isentropically expanding the flow from P', to P3, (PrandtI-Meyer expansion theory),
the Mach No. (M3) of the expanded local flow is determined.

;,h=L\__I/ _ -

3



_r',,,4"r'__. _ P...4 RTN 235--01

6. If the turning angle of the outer boundary of the shear layer is defined as vt, then
it is determined from

,o 1
7. The angle of the outer edge of the shear layer relative to the free-stream velocity

vector is then

8s = v_ -8"

6s = 81.84 - 49.75

= 32.09 for 3' = 1.11

Based on the results from the preceding procedure, the wake closure zone shown in

Fig. 10 was defined. The angle. 8=, is the outer shear layer angle. The low heating
region in the wake occurs on the inside of the shear layer. Several potential methods

could be used to define this inner edge (heating, velocity or shear level). In the current
quick analysis the shear layer spreading angle was measured off of a schlieren of the

AFE presented in Ref. [5]. This data was for air at Math 6. The measured shear layer
angle was 7 degrees.

In order to understand the flowfield around the blunt end of the brake, the plot in
Fig. 1 1 was prepared. The flow properties shown are from the Table 4 BLIMPK results
plotted on the surface of the brake. The straight lines issuing from the comer are Math

waves calculate from boundary layer edge conditions. The shock shape was dedved

from AFE schlieren presented in Ref. [6] for CF4 at Mach 6 (pl/poo = 11.7). The wind
tunnel shook shape was adjusted to account for shook density ratio effects using

6/R = 0.667/(pl/poo - 1) Nondimensional stand-off distance

where pl/poo = 14.73 fortime 114 sec in COs

P1/P= = 11.7 for CF4(tunnel)

5ft---.i= 0.779 "
yielding 6_,,,

The Mach wave was drawn at the Mach angle at the body to the shock. Compatibility of

these conditions at the shock were not verified. More than likely the Math waves bend

to the right when moving along the Mach line from the body to the shock.

BRAKE DESIGN CONSIDERATIONS

During the analysis process of determining the brake wake heating environment,
several observations regarding the current brake design were made. These observations

are:

1. The geometric stagnation point is located quite near the blunt side of the brake at
20 degrees angle of attack

4
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2. Expansion from the geometric stagnation point along the hyperbotoid is only about
11 degrees.

3. As a result of (2) the sonic point is located on the toms (See Fig. 11).

4. Although specific calculations were not performed, it is anticipated that the constraint
of the sonic point to the toms region will produce a high heating region on the
hyperboloid. This high heating region would probably be higher oonvectively than
the stagnation region by a factor of 1.2 to 1.4. This is a similar flow situation to
that measured by Ref. [7] as shown in Fig. 11. The bluntness, X'/R', of the upper
portion of the brake is about 0.144.

5. The effective radius based on this bluntness (X°/R ° = 0.144) is approximately 13.65
meters. This is nearly the same as the effective radius of 13.0 meters used in both
the forebody convective and radiative heating calculations.

6. The constrained sonic point produces higher than Newtonian pressures between the
stagnation and sonic point. Consequently, aerodynamics based on Newtonian theory
alone are inadequate for this type of body.

Based on the preceding observations and work presented in preceding section the
following recommendations are made:

1. New brake geometries or modifications of the current brake geometry as shown
in Fig. 12 should be examined. The hyperboloid or pdmary blunt surface should
be designed to accommodate the sonic point which occurs at a turning angle of
approximately 40 degrees from the stagnation point. If large excursions (above 5
degrees) in angle of attack are anticipated, this should be accounted for as well. The
extended brake as shown in Fig. 12 would also substantially increase the usable
wake payload volume.

2. The toms radius should be held constant for design simplicity. If the sonic point is
not located on the toms, the heating will be more benign and lower environments
will exist. The toms radius environment can be determined using BLIMPK (Ref. [8]
for convection and RADCOR (Ref. [9]) for radiation.

3. The new and modified brake face and wake environment should be examined at-three

altitudes using BLIMPK boundary layer calculations, LANMIN (Ref. [10]) for pressure
distributions, RADCOR for radiation distributions and correlations presented herein
for wake conditions. By examining the brake geometry at three separated Reynolds
numbers all potential heating design considerations will be identified.

4. Computational fluid dynamics code validation calculations should follow basic design
trades preformed using engineering codes.

REFERENCES

1. Zappa, O. L., and W.G. Reinecke, "An Experimental Investigation of Base Heating
on Typical Mars Entry Body Shapes," J. Spacecraft, Vol. 10 No. 4, April 1973.
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Table 1: M'FV Trajectory Data

Time AIt.

(See) (KM)

110 i43.7

112 i 43.1

114 42.6

116 42.1

118 41.6

120 41.2

122 I 40.8
/

124 I 40.5

126 40.2

128 39.9

130 39.7

132 39.5

134 39.3

136 39.2

13_8" 39.1

140 39.0

142 39.0

144 39.0

146 39.0

148 39.1

150 39.2

Vel.

(KM/sec)

6.958

6.913

6.866

6.817

6.766

6.714

6.660

6.604

6.548

Temp.
(K)

172.03

Press.

(N/M 2)

11.51 864

Densibj,
(KG/M J)

172.60

173.14

173.63

174.08

12.29919

13.06595 29.40

29.64

29.78

29.84

29.81

29.71

29.53

13.81158

14.52953

0.3678D-03

0.3914D-03

0.4145D-03

0.4369D-03

0.4584D-03

174.49 15.21327 0.4788D-03

174.86 15.85678 0.4980D-03

16.45464175.19

175.49

0.5158D-03

17.00229 0.5321D-03

6.491 175.74 17.49571 0.5468D-03

17.93181 0.5597D-03

QC QR QTOT

(W/CM=)
28.66 56.92 85.58

29.081 57.73 86.81

57.81 87.21

57.09 86.73

55.55 85.33

53.17 83.01

50.64 80.46

47.65 77.35

43.98 73.51

6.433

6.375

175.96

176.15 18.30809 0.5708D-03

6.316 176.30 18.62283 0.5801D-03

6.258 176.42 18.87512 0.5876D-03

6.201 176.52 19.06487 0.5932D-03

6.143 176.58 t9.19251 0.5970D-03

6.087 176.61 19.25920 0.5989D-03

6.031 176.61 19.26657 0.5992D-03

5.976 176.59 19.21661 0.5977D-03

5.922 176.54 19.11180 0.5946D-03

5.870 176.46 18.95515 0.5900D-03

29.27 39.83 69.10

28.96 35.76 64.72

28.59 31.26 59.85

28.16 26.41 54.58

27.70 21.83 49.53

27.19 17.28 44.47

26.65 12.72 39.37

26.08 8.76 34.85

25.49 4.83 30.32

24.89 0.00 24.89

24.27 0.00 24.27

23.65 0.00 23.65

7
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Table 2: Base Convection Heating

The procedure for calculating convective heating in the base region follows that of
Warmbrod. This method can be used for both air and CO2 atmospheres. References to

curve fit equations for calculating viscosities have been included for use with a Martian

atmosphere assumed to be 100%CO2.

Base Pressure: (Engel)

PB = pod 10 ('.187°s + .lo8o6 (Moo - 8j "s)

where

Poc

Mcc

= free-stream pressure (lbf/ft 2)

= free-stream Mach number (dimensionless)

Free-s_ream Math Number:

Moo =
where

uoo = free-stream velocity (ft/s)

g = 32.174 (Ibm ft/Ibf s2)

-_ = 1.40 for CO2 at free-stream conditions

R = 35.10 (ft lbf/Ibm R)

T_ = free-stream temperature (R)

Base EnthalDy: (Buimer)

H8 H, (.26 +.651 (.._s))

where

Hs = sta=gnation enthaJpy =

+ CpT= (BTU/Ibm)

Hw = wall enthatpy (BTUflbm)

Cp = specific heat of CO 2 (BTU/lbm R)

Viscosity:
For P < .0001 atm use curve fit of Candler

For P >_..0001 atm use curve fit of Marvin & Deiwert

Free-stream Reynolds number:

(Reoo)o=

where

Pod

D

= free-stream density (slugs/fP)

= base diameter (ft)

= free-stream viscosity (Ib/ft-s)

(]bf/ft 2)

(Dimensionless)

(Dimensionless)

(BTU/lbm)

(Dimensionless)

8
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Table 2: (Continued) Base Convection Heating

Heat Transfer Coefficient: (Warmbrod)

hB = .349 poe uoo (Re_) D

where

/_a = base viscosity (]b/ft-s)

Base Convection Heat Rate:

qB = hB (HB - Hw)

REFERENCES

-.I"t_.2 (_.._'_ -.IT22 (BTU/ft2-S -° R)
\_a2

(BTU/ft2-s)

• Warmbrod, John D. "Empirical Method to Predict the Convection Heating for the Base

(Separated) Region of the AFE," REMTECH Technical Note RTN 171--01, March
1987.

• Engel, C.D., " AFE Preliminary Wake Impingement Heating," REMTECH Technical
Note RTN 171--04, June 1987.

• Butmer, B.M., "Heat Transfer Measurements in a Separated Laminar Base Flow,"

Journal of Spacecraft, Vol. 14, No. 11, November 1977.
• Candler, G., "Computation of Thermo-Chemical Nonequilibrium Martian Atmospheric

Entry Flows," AIAA 90-1695, June 18-20, 1990.
• Marvin, Joseph G. and George S. Deiwert., "Convective Heat Transfer in Planetary

Gases," NASA Technical Report NASA TR R-224, July 1965.
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Table 3: Base Radiation Heating

The procedure for calculating radiation heating in the base region follows that devel-
oped by Heame. The following empirical equation was derived to correlate experimental

wake radiation data measured in the NASA-Ames Research Center free-flight hyper-

sonic facility. Measurements were macle over a range of velocities from 20,000 ft/sec to
32,000 fYsec for several ablation materials.

(BTU/ft_sec)

where

C = constant of proportionality -- ablation material dependent

D = vehicle diameter (ft)
poc = free-stream density (lbm/ft 3)

uoc = free-stream velocity (it]s)

8 = angle between the local surface normal ancl the wake angle

A check calculation of this relation was made for air using project FIRE I flight data.
The results were

q,=,_ = 1.33 Btu/sft-sec (calculated) _f po= = 4.745 x 10-_ Ibm/eft
q,=d = 1.41 Btu/sit-sec (measured) @ [ u== = 37; 840 ft/sec

D = 2.204 tt

A value of 17.0 (BTU-sS)/(lbm-ft 6.s) for the constant C was obtained using Lexan as

an ablator. This selection of ablation matedal resulted in the highest radiation heating in

the wake region and was recommended in application of the above equation..

This correlation when applied to a range of e from 0 to 90, calculates radiative heating
rates which are at a maximum at 8 = 0 and decrease to a 0 heat rate at e = 90. For the

AFE aerobraking vehicle the minimum wake radiationheating rates were calculated to

be 36.6 percent of the peak radiation heat rates as determined by Sambamurthi.-From
this relationship the following correlation was dedved for estimating the radiation heating
rates in the base for Mars atmospheres.

('uo= '_7(.634 cos 8 + .366) (BTU/ft2s¢c)

REFERENCES

• Heame, L.. F., et al., "Study of Heat Shielding Requirements for Manned Mars

Landing and Return Missions," Lockheed Missiles & Space Company Final Report
4-74-64-1, December 1964. -

• Sambamurthi, Jay, "Estimation of Radiative Heating to the AFE Carder -- PDR,"
REMTECH Technical Note RTN 195-14, December 1988.
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Table 4: BLIMPK Boundary Layer Edge Conditions for T_me= 114 sec
STATION NO 1

CP-PROZEN Cg-EOUZL DLNM/DLNT DLNM/DLNP GAMMA

0.34931E-00 0.46617E*0t-0. t91sgE-01 0.94477E-01 0.;t210E-01

TEMPo 6643.0844 OEG-K PRE$=, 0.1858 ATM MOL '#"r= 1T.903097g

ENTHALPY= 0.5E3OaSOE*04 CAL/GM ENTROPY= 0.35512E*01CAL/Ga-0EG K
OENSrTY= 0.380900E-03 LB/CUFT

VEL= 0.000E*00 FTISEC MACHo 0.000E*00 AREA= 0,000E*00 50FT/LB/SEC

SPECZES MOLE _R. SPECZES MOLE FR. $PECZ_$ MOLE FR,

C 0.18621E*00 0 0.59311E*00 02 0.44045E-04

C0 0.22063E*00 C02 0.52997E-05

STATZON N0 2

CP-FROZEN ¢P-EOUIL OLNM/DLHT OLNM/OLNP GAMMA

0,34931E'O0 0.466|aE*01-0.19159E-01 0.94477E-01 0.112_0Eo01

TEMPo 5642.9440 DEG-K PRE$= 0.1857 ATM M0L WT= _7.g033¢77
ENTHALPY= 0.55202265*04 CAL/GM ENTROPY= 0.3E$12E-0_ CAL/G_-OEG K
0EN$_TY= 0.380796E-03 LE/CUFT

VEL= 0.142E-03 FT/SEC MACHo 0.233E-01 AREA= 0.185E-02 $0FT/LB/$EC

SPECZE$ MOLE _R. $PECZES MOLE FR. SPEC:E$ MOLE F_.
C 0.18520E*00 0 0.Eg310E-00 02 C.44043E-04
CO 0.:2065E*00 C02 0.53994E-05

STATZON NO 3

CP-FROZEN CP-EOU_L 0LNM/OLNT OLNM/OLND GAMMA

0.3493OE-O0 0.4EEZZE*OI-O.|gIEQE-01 0,g447?E-01 0.11210E-0t

TEMPo 6642.5225 0EG-K PRE$= 0. tESE ATM MOL WT= 17.9039376

ENTHALPY= 0.EE2gSS2E-04 CAL/G,M ENTROPY= 0.35512E*01 CAL/C,M-OEG K
OENSZTY= 0.380486E-03 LB/CU_T

VEL= 0,284E_03 FT/SE¢ MACHo 0.466E-01 AREA= 0.g24E*01 $OFT/LE/SE_

SPECZE$ MOLE FR. SPECIES MOLE FR. $PECZE$ MOLE FR.
C 0.1E617E*00 O 0.5g3ogE*o0 02 0.44027E-04

CO 0.220695*00 C02 0.53987E-05 . _-

STATZON N0 A

CP-FROZ_N CP-EOUZL OLNM/OLNT 0LNM/OLNP GAMMA
0.34926E*00 0.AGEA8E*01-0.1916EE*01 0.94477E-01 0.t1209E*01

TEMP: 8639.5723 OEG-K PRES= 0.1844 ATM MOL w'r= 17.g083S24

ENTHALPY= 0.5524834E*04 CAL/GM ENTROPY= 0.355|2_*01 CAL/GM-DEG
DENSITY= 0.37831ge-03 LB/CUFT

VEL= 0.?lIE=03 FT/SEC MACHo 0.117E-00 AREA= 0.37ZE*O1 $0FT/LB/SEC

SPECIES MOLE FR. SPECZE5 MOLE FR. SPEC=E$ MOLE FR.

C 0.185gTE*00 0 0.5g2ggE-00 02 0.43913E-Oa
C0 0.220ggE*00 002 0.s3g31E-OS

_;TAT_ 0N NO S

CP-FROZEN ¢_-EOU_L OLNM/0LNT 0LNM/0LNP

0.34912E._00 0.46740E.-01-0. 1919EE.,.01 0.94478E-01

11
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Table 4: (Continued) BLIMPK Boundary Layer Edge Conditions for Time = 114 sec

TEMPs 652g,0072 OEG-K =R[$= 0.1B02 ATM MOL w'r= 17.9241934

E_THALPY= 0oES0?g30E*O_ CAL/G_ ENT_0PY= 0.355;22_01CAL/GM-DEG K
DENSITY: 0.370643E-03 LB/CUFT

VEL: 0.142E_04 FT/$EC MACHs 0.234E'00 AREA= O.{EgS'01SQFT/LBISEC

S_ECZ_S MOLE FR. SPECZ_S MOLE FR. SPECZ_$ MOLE FR.

C 0.18525E$00 0 o.sg253EoO0 02 0.43505E-Da
CO 0.22207E*00 C02 0,53733E-05

ST_T_ON NO 6

Cm-FROZEN CP-EOUZL OLNM/OL_T OLNM/DLNP GAMMA

¢.3_888E_00 0.46ag2_*Ol-O.1924_E_O! 0.gA471E-O! 0.11203E-01

TEMPt 6611.2981DEG-K PRE$: 0.1734 ATM MOL tOT= 17.gSOEE95

E_THALPY: O.5ATgEERE*04 CAL/GM ENTROPy: 0.355_2E°01CAL/G_-D_$ K
DENS;TY= 0.358063E-03 LB/CUFT

VEL= 0.214E_04 FT/SEC MAC_s 0.352_-00 AR_A= 0.130E*01 $OFT/LB/$EC

SPECZ_S MOLE FR, SPECIES MOLE FR. SPECIES MOLE FR.
C 0.18_04E*00 0 0.59202E-00 02 0,42S29_-04
CO 0.22389E-00 C02 0.53397E-05

STATZON NO 7

CP-_ROZEN CP-EOUXL OLNM/OLNT DLNM/OLNP GAMMA
G.34854E-O0 0.47100E-Ot-O.19310E-01 0.94AaSE-O! 0.11198E-01

TEMDw ESEG.28E20EG-K PRES: 0.1641ATM MOL vrl"_ 1?.g887650
ENTHALPY: O.543g4IOE-Od CAL/GM ENTROPyt 0.355125-01 CALIGM-OEG X
DENSITY= 0.3d0898E-03 LB/CUFT

VEL: 0.2BGE*Od FT/$EC MACH= 0.473E$00 AREAs O. IOZE*01 $OFT/LB/$EC

$PECZE$ MOLE FR. SPECZES MOL_ FR. $PECZE$ MOLE FR.
C 0.13231E$00 O 0.59116E*00 G20,AIO_4E-Ga
CO 0.226_7E*00 CO20.s2gIAE-OS

STATZON NO 8

C_-FROZEN CP-EOU_ DLNM/OL_ OLNM/OLNP GAMMA
0.34810E$00 0.47361E$Ol-O. Ig38gE-010.g4382E-010.11192E*01

TEMP: 6553.7338 DEG-K PR£$= 0.1528 ATM MOL Wl": 18.0385247

E_THALP¥: 0.53|7025E*OA CAL/C.dr4 ENTROPY= 0.3SSIZS*0_ CAL/GM-OEG X
OENS_TY_ 0.31gS81E-O3 LB/CUF_

VEL_ 0.359E$04 FT/SEC MACHm 0.S)6E*00 AREA: 0.870E_00 5QFT/LB/SEC

S_SC_ES MOLE FR. SPeCieS MOLE FR. SPSCZS3 MOLE WR.
C O.t$OOEE-OO O O.SgO03E-O0 02 0.40672E-04
CO Q.2298TE_O0 CO20.52274E-OS

. o
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Table 4: (Continued) BLIMPK Boundary Layer Edge Contritions for "Time= 114 sec

STAT;0N NO 9

CP=FROZEN CP-EOU_L BLNM/OLNT 0LNM/DLNP GAMMA

0.34756E_00 0.47666E_01"0.19478E*01 0.94256E-0t 0.11184E-01

TEMP= &EtQ.3024 DEG-K PRE$= 0.139a XTM MOL WT= 18.1010011
ENTHALPV= 0:532175EE*04 CAL/GM ENTROPY= 0.3EET2E-01CAL/G_-0EG K
DENSITY= 0.294655E-03 LB/CUFT

V_L= 0,434E*04 FT/$EC MACH= 0.722E*00 AREA= 0.783E-00 $OFT/L_/$E;

SPECZ_5 MOLE FR. SPECZE$ MOLE FR. $=ECZES MOLE FR.

C 0.17721E*00 0 0.Ea862E*O0 02 C.39197E-04
CO G.Z3413E*00 C02 0.514595-05

STATION N0 lq

CP-FROZEN CP-EOUZL 0LNM/OLNT OLNM/OLN_ GAMMA

0.34512E_00 0.483EgE-0t-0.19665E*010.g3669E-01 0.I_163Eo01

TEM_= 6=06.77=4 DEG-K PRE$= 0.1091ATM M0L WT= 18.2591960
ENTHALPY= 0.51487725404 CAL/GM ENTROPY= 0._55125-01CAL/GM-DEG K
0ENSITY= 0.235620E-03 LB/CUFT

VEL= 0.586E*04 FT/SEC MACH= 0.ggtE*00 AREA= 0.7_IE*00 $OFT/LB/SEC

SPECIES MOLE FR. SPECZE; MOLE FR. SPECZE$ MOL_ FR.
C 0.16956E+00 0 0.58480E*00 02 0.35472E-04
C0 0.24560E*00 C02 0.49228E-05

STATZON N0 11

CP-_ROZEN C_-EOUZL 0LNM/0LNT OLNM/OLNP GAMMA

0.34465E*00 0.4Eg12E'01-0.tg777E_01 0.9257TE-01 0.11143E-01

TEMP= 6298.7872 DEG-K PRES= 0.0844 ATM MOL WT= 18.A450081

ENTHALPY= 0.4g72030E*04 CAL/GM ENTROPY= 0.3_512E*01 CAL/GM-0EG K
OENSZTY= 0.187914E-03 LB/CUFT

VEL= 0.709E_04 FT/$EC MACH= 0.122E*01 AREA= 0.750E*00 SOFT/LB/$EC

SPECZE$ MOLE FR. SPECZES MOLE FR. SPECZE$ MOLE FR. " - -
C 0,15156E*00 0 0.58081E*00 02 0.31942E-04
C0 0.25759E-00 CO2 0.46864E-05

STATZON NO 12

CP-FROZEN CP-EOUtL 0LNM/OLNT OLNM/OLNP GAMMA

0.34357E*00 0.Aglg2E*01-0.19a03E*01 0.91664E-01 0._1129E*01

TEMP= 8218.3775 DEG-K PRE$= 0.0693 ATM MOL WT= 18.5793942
ENTHALPY= 0.4839520E_04 CAL/GM ENTROPY= 0.35512E*01 CAL/GM-OEG X

13
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Table 4: (Continued) BLIMPK Boundary Layer Edge Conditions for Time = 114 sec

DENSITY= 0.151428E-03 LB/CUFT

VEL= 0.7BgE*04 FT/$EC MACH= 0.137E-0t AREAR O.BOSE*O0 $OFTILBISEC

SPE_Z_S MOLE FR, SPECIES MOLE _R. SPECZE$ BOLE FR,
C 0,1554EE_00 0 0,57775E_00 02 0.29476E-04

CO 0.26676E°00 C02 0.45055E-05

STkTZOH NO 13

C=-FROZEN CP-EOUIL OLNMIOLNT DLNM/DLNP GAMMA

D.34258E-00 0.49347E*01-0.197B1E-01 0.90ELSE-01 0.IIIIEE*01

TEMPe 6144.2547 DEG*K PREEe 0.057E ATM M0L w'r= 18.7058860

ENTHALPY= 0.4717031E*0a CAL/GM ENTROPY= 0.3SST2E*01CAL/GM-DEG K
DENSITY= 0.133175E-03 LB/CUFT

VEL= 0.8S6E-04 FT/SEC MACH= 0.150E-0t AREA= 0.E7?S*00 $OFT/LB/SEC

SPECIES MOLE FR. SPEC;E$ MOLE FR. SPECIES MOLE FR.

C 0,14970E_O0 0 0.57488E-00 02 0.2732EE-04
CO 0.27539E_00 C02 0.43365E-05

_TAT:ON NO 14

C_-FROZEN CP-EOUZL DLNM/OLNT OLNMIOLNP G&MMA
0.34152E_00 0.49393E-01-O. t9706E-01 0.89080E-01 0.11103E_0!

TEMPs 6066.5596 DEG-K PRESs 0.0471ATM MOL w'r= 18.0411_12
ENTHALPY= 0.dSBBOE2S*04 CAL/GM ENTROPY= 0.35512E-01C.ALIGM-DEG K
DENSZTY= 0.111274E-03 LB/CUFT

VEL= 0.g22E*04 FT/$[C MACH= 0.163E*01 ARE&= 0.975E'00 $OFT/LB/$EC

SPECZE$ MOLE FR. SPECZ[$ MOLE FR. SPECIES MOLE _R.

C 0.14355E*00 0 0.S?181E*O0 02 0.2$1ggE*04
CO O.28451E*00 C02 0.41581E-0E

STATZON NO 15

CP-FROZEN CP-EOUXL OLNM/DLN3" OLNM/OLNP G&MMA

0,33965E*00 0.49$07E_01-0.1gs68E-01 0.B66gEE-01 0.11082E°01 "T-

TEMPs 5938.8272 OEG-K PRESs
ENTHALPY= 0.4402900E-04 CAL/GM

DENS;TY= 0.g36661E-04 LB/¢UFT

0.0384 ATM MOL WT= tg.03182G6
ENTR0PYs 0.355t2E*01CAL/GM-OEG K

VEL= 0.10tE*0S FT/SEC MACH= 0.181E-01 AREAs 0.106E-01 $0FT/LB/$EC

SPEC:E$ MOLE FR. SPECZES MOLE FR. SPECIES MOLE FR.
C 0.t3dE?E*00 O 0.5674BE-00 02 0.182_7E-O4
C0 0.2g?EzE*00 C02 0.374565-05

STXTZ0N NO 16

CP-FROZEN C_-EOUIL DLNM/0LNT OLNM/0LNP G&MMA
0.338625÷00 0.49237E*01-0.19360E_01 0.84734E-01 0.110715-01

TEMPe 5863.8002 OEG-K PRESs 0.0313 ATM MOL w'r= 19.1sg2041

ENTHALPY= 0.4277170E-04 CAL/GM ENTROPY= 0.355_2E-0_ CALIGMoOEG K
DENSITY= 0.775533E-04 LB/CUFT

VEL= 0.106E_05 F_/SEC ICACHs 0.lg3E*01 AREA= 0.1215=01 $0FT/LI/$EC

SPECXE$ BOLE FR. $PECZE$ MOLE FR. $PECZE$ MOLE _R.
C 0.12883E'00 0 0.564_6Eo00 02 0.1677BE-04
CO 0.30699E_00 C02 0.35811E-OS

14
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Table 4: (Continued) BLIMPK Boundary Layer Edge Conditions for qqme = 114 sec

STATION NO 17

CP-FROZEN CP-EOU_L DLNM/OLNT OLNM/OLNP GAMMA
O.33752E*00 0.48783E*0t-0,1g068E*01 0.E_354E-01 0.1105gE-01

TEMP= 5783_301g OEG-K PRE$= 0.0250 ATM MOL WT= 15.3192452

ENTHALPV= 0.41421t2E_04 CAL/GM ENTROPY= 0.355_2E_01CAL/G_-OEG K
DENSITY= 0.635494E-04 LB/CUFT

VEL= 0.112E605 FT/SEC MACH= 0.205E*01 AREA= 0.1ATE*01 $OFT/LB/SEC

SPECIES MOLE FR. SPECIES MOLE FR. SPECIE; MOLE _R.

C 0.12181E*00 O 0.56095E*00 02 0.15341E-04
CO 0,31722Eo00 CO2 0.34073E-05

;TAT_0N NO 18

CP-FROZEN CP-EOUIL 0LNM/OLNT OLNM/0LND GAMMA
0.33645E_00 0.48162EoO1-0.18708E-01 0.79741E-01 0.1104gE-01

TEMP= 5704.4673 OEG-K =RES= 0.0200 ATM MOL _r'r= lg.4687181
ENTHALPY= 0.400981gE-04 CAL/GM ENTROPY= 0._5512_-0I CAL/GM-DEG K

DENSITY= 0.518541E-04 LB/CUFT
VEL= 0.117E*0E FT/$EC MACHI 0.217E*01 AREA= 0.165E*01 SOFT/LE/SEC

S_EC_S MOLE FR. ;PECZES MOLE FR. $P_:ZE; MOLE FR.
C 0.11501E*00 0 0.ES756E-00 02 0.1403EE-04

C0 0.32741E*00 C02 0.3240gE-05

;TAT:ON NO Ig

CP-FROZEN CP-EOUIL 0LNM/0LNT 0LNM/_LNP GAMMA

0.2_53gE*00 0.47343E+01-O.18266Eo01 0.76805E-01 0.1_038E*01

TEM=w 5624.6137 OEG-K PRES= 0.0158 ATM MOL WT= 1g.6_25146
ENTHALPY= 0.3875947E*04 CAL/GM ENTROPY= 0.35512E-01CAL/G_-0EG K

OENSXTY= 0.420Y01E-04 LB/CUFT
0.I22Eo05 FT/SE¢ MACH= 0.=29E*01 AREA= o. Igs_*01SOFT/LB/SEC

ES MOLE FR. SPECIES MOLE FR. SPECIES MOLE FR.
C 0.I0802E_'00 0 0,55407E,,.00 0Z 0.12821E-04

CO 0.337g0E+00 C02 0.30772E-0S

STATION NO 20

CP-FROZEN CP-EOUIL OLNM/OLNT OLNM/0LNP GAMMA

0.33432E*00 0.AE202E*Ol-O.17733E_01 0.73528E-01 0.1102gE_01

TEMPt 5543.6972 OEG-K PRESs 0.012a ATM MOL W'r= Ig.780593g" : -
ENI"HALPY= 0.374061EE*04 CAL/GM ENTROPY= 0.ASST2E*01 CAL/GM-0EG K
OENSITY= 0.337g83E-04 LB/CUFT

VEL= 0.127E_0S FT/SE¢ IktCH= 0.241E_O1 AREA= 0.233E*01SOFT/LB/SEC

SPEC!ES MOLE FR. SPECIES MOLE FR. SPECIES MOLE FR.
C 0.10083 E=O0 O 0.SE047E*O0 02 0.1158gE-0a

C0 0.34868E_00 C02 0.29175E-05

STATION NO 21

CP-FROZEN C:-EOUXL 0LNMIOLNT OLNM/OLND GAMMA

0.3272gE*00 0.31823E*01-0.1112gE*0t 0.AtA43E-01 0.11019E'01

TEMP= 4960.3313 OEG-K PRES= 0.0020 ATM MOL W'r= 20.9aSAaTg
ENTHALPY= 0.2802094E-OA CAL/GM ENTROPY= 0.ASEI2E$01 CAL/GM-0EG K
OENSZTY= 0.6=0370E-05 LBICUFT

VEL= 0.15TE*0S FT/SE¢ MACH= 0.324E_01 AREA= 0.g96E$0_ SQFT/La/SEC

SPECIES MOLE FR. SPECIES MOLE F_. SPECIES MOLE FR.
C 0.dT871E-01 0 0.E2401E-00 02 0.63;01E-05

C0 0.42811E+00 C02 0.20612E-05
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Figure 1" Side View of MTV Aerobrake Structure
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27.4 m

Figure 2: Top View of M'TV Aerabrake Stru_ure
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Figure 10: Wake Closure Zone at Peak Heating
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NEW SONIC POINT

_._ CURRENT SONIC POINT

Figure 12: Suggested Brake Modifications to Reduce Peak Brake Heating and Enlarge
Wake Paytoad Zone
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Equipment Life and Self-Check

This section discusses the work accomplished and the issues identified concerning the
processing, inmgration, test, assembly, verification and operation of the Mars vehicle
(prima_y the r_ference Cryo/A_robrake vehicle). Self-check capabilities include Built-in
Test/Built -in Test Equipmmnt (BIT/BITE), Fault Detection and Differentiation (FD&D),
and mortifying techniques. The philosophy of readiness for each stage in piece of
equipment's lifetime is based on these capabilities and _chniques, especially for the test,
verification and opmmfions phases.

Since autonomous checking involves both inter- and intra-syst_m "communications",
into'faceidentificationand ve_ficationneed toestablish_ functioning.Ground

processingisbased on sequencingofhardware asconstrainedby integration,testand

assembly.Assembly involvesnot onlythemanifestingand launchof thevehicle,but also
theconstructionand inte:rfacesoftheAssembly Node. Assembly in spacerequiresthatthe

_If-check capabilitybe partof theprocessofconstructionand operations,sincethe

¢L--mandinmanpow_ otherwisene_led toperform testand checkout would overwhelm

any supportfunctionor the limitedcrew.

Test,verificationand operationof theMars vehicleputsthisserf-checkphilosophyinto

practice.The overalltestapproach utilizesself-checkingatthecomponent and systemlevel
topezform bothinitialand continuoustasting.Thisimbedded self-checkcapabilityisalso
used inthever/ficationphase forrecheckingcomponents and systemswithintheintegrated

elements._tions willuse continuouson-boardautonomous checking duringeach stage
of themission.Without thiscapability,monitoringand statusingover thei/reofthevehicle

would requi_ more EVA work thantheschedulecan afford.Thisrequi_s thattheData
Management System oftheveh/cl¢(indel_ndentflight)and theEarth/SSF basedassembly

controlpointsoftwarehas thecapabilitytointezlm=ttheBIT/BITE results,separating
sensorfa/Im'efrom component failure,and referencing.affectedareas.

Sdf- checking will reduce the time and incase the efficiency of the testing, verification
and opexation phases of the Mars vehicle program. In order to best re,alize these benefits,
the processing, integration and assembly phases must be planned in accordance.

pRL=N_I)tNG P/_qE Bt #NK NOT RtW_D
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r""

Earth.to-Orbit (ETO) Heavy Lift Launch Vehicle (HLLV) Definition Trades.

An airplane must be designed considering the airports it flies to and from and the
cargo/passengers it will have to carry. In a similar fashion a launch vehicle must be
designed considering cargo manifest and transportation node requirements.

Externally mounted aerobrake. Payload fairings are used on launch vehicles when the
payload cannot withstand the aerodynamic and heating environment of launch. The Space
Shuttle Orbiter is an example of an item which is rugged enough to be launched without a
protective fairing. Since an aerobrake of the type being considered for SEI missions is
designed to operate under severe aerothermal conditions, consideration was given to
launching it without a fairing.

Aembrakes are large and low density. If the brakes are launched with a protective fairing,
reasonable sizes of launch vehicles leads to volume-limited launches of brake segments.
This adds launches and requires on-orbit assembly. The latter can add weight to the
aerobrake in the form of field joints for the brake segments and also requires a 'final
assembly building' in orbit. The potential penalties of launching an exposed aerobrake
include (1) ascent performance penalties to the launch vehicle, and (2) structural and
thermal protection additions if the launch environment is different than the brake mission
environment.

The fin'st two charts illustrate some configurations of an aerobrake on a Shuttle-derived
launch vehicle. Launch performance is being investigated to determine feasibility of this
concept. If it proves feasible, then the next step would to be to compare the brake design
impact for external launch to the impact for launch in segments.

HLLV Sizing. The optimal size of a HLLV is a tradeoff between increased development
cost for a larger vehicle versus fewer flights and lower on-orbit assembly costs. The next
chart shows the variation in number of launches and achieved payload average mass for
three sizes of HI_V and four transfer vehicle propulsion options under consideration.

Transport Node Location. The next chart gives comparative data on alternative
locations for a transportanon node. Prom a propulsive standpoint, a transport node should
be located as close to the Earth as possible if a shift fi'om low Isp (chemical rocket) to high
Isp (electric) is occurring, so as to maxirniTe the fa'aetion of the mission AV performed by
the higher Isp propulsion. Even if the Isp is not changing (chemical rocket both for ETO
and transfer), the closer the node is to the Earth, the less propellant expended to get the
node hardware on site.

Manifesting. The remaining charts in this section deal with manifesting of a ETO HLLV.
Two large fairings are considered: a 7.6x30m fairing with a 120 ton lift capacity, and a
10x30m fairing with an 84 ton capacity. A nuclear electric propulsion (NEP) vehicle will
require seven ETO launches. This includes two launches with the smaller fairing and five
with the larger. A solar electric propulsion (SEP) vehicle requires only six ETO launches,
with five of them using the larger fairing. A nuclear thermal rocket (NTR) transfer vehicle
will require nine ETO launches, with six required to be the larger fairing size. The implied
vehicle design density for payload envelopes is about 40 kg payload per cubic meter of
volume. This means the vehicle should be optimized for this payload density, with
allowance for putting larger or smaller fairings on for particularly dense or bulky payloads.

Using a larger ETO Heavy Lift Launch Vehicle, with a 10x30m fairing and a 140 t capacity
reduces the number of launches required. In the NEP case the launches are reduced from
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seven to five. In the SEP case the flights are reduced from six to five. In the NTR case the
launches are reduced from nine to seven, although one flight is very lightly loaded.

The last several charts compare a cryogcrdc propulsion transfer vehicle with acrobrakes for
arrival at planets to other transfer vehicles as far as ETO flights required. In the mixed
7.6x30/10xB0m HLLV case, 11 flights are required for the Cryogenic transfer vehicle, vs
9,6, and 7 for NIX, SEP, and NEP respectively. For the larger, 140 metric ton capacity
I-ILLV, 8 launches a__ required for the Cryogenic u'ansfer vehicle, versus 7, 5, and 5 for
the NTR, SEP and NEP rcspccuvely.
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FOREWORD

This report was prepared by General Dynamics Space Sytcms Division (GDSS) for Boeing

Aerospace under Contract HG1420. This report documents resuks of a seven month technical effort
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SECTION 1

INTRODUCTION

The Umted States is entering an era of expanded space exploration activity that will involve

manned missions to Mars. NASA Marshall Space Flight Center (NASA/MSFC) has thus funded a

.study of Space Transfer Concepts and Analysis for Exploration Missions (STCA.EM). A key

aspect of thisstudy is the utilizationof high energy, cryogenic propellantfor both Chemical

Propulsive and Thermal Nuclear Rocket vehicles. Boeing Aerospace has contractedGeneral

Dynamics Space Systems Divisiontoanalyzeorbitalpropellantdepotsforthesemissionscenarios

and vehicleconcepts.

The objectivesof theorbitalpropellantdepot analysiswcm to:(I)review requirementsfororbital

depots,(2)perform preliminarytradesfororbitaldepot,location,configuration,and operation"(3)

perform analysisof integrationcompatibilityof mission vehiclesand depots,(4)develop initial

depot concepts,(5)idcntif-ydepot technologyrequirements,and (6)estimatenon-recurringand

recurringdepot facilitycosts.These objectivesare summarized in the chart"OrbitalPropellant

Depot Study Objectives".Thismpon summaziz_ theinitialfindingsof thispreliminarystudy.
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SECTION 2

REQUIREMENTS ASSESSMENT

The following requirements token from the Space Transfer Concepts and Analysis for Exploration

,Missions third quarterly review by Boeing Aerospace and Elecwonics, 22 June 1990 were assessed

and updated where appropriate. Revisions, annotations and comments relative m the requirements

are highlighted with bold letters, otherwise the requi_ments are deemed valid for this study. The

reference in brackets refers to the view graph chart in the third quart_ly review package. Vehicle

configurations a_ shown in the charts "Cryo/AB Reference Configu..-ation" and "Nuclear Thermal

Rocket (NTR) Configuration".

(1) Mars Transfer System (MTS) ['VG 2-01]

(a) All passive cry. ogernc control system.

Co) No MTV-TMIS fluid n-ansfer before earth depamu'e. ('ME tanks refrigerated or filled

after MOI). [VG 2-02]

(2) Mars TransferVehicle-Trans-MarsInjectionStage(M'IW-TMIS) [VO 2-02]

(a) Passivethermalconn'olsystemincludingzero--gthermodynamic vent sys'_m coupledto

multiplevapor cooledshields.

(b) TMIS insulatingsystemisacontinuouslypurgedMLI over foam designoptimizedfor

m_n;rn.rn ground-hold, launch, and orbitalboil.off. Includes vapor cooled shield

(coupled to TVS) outsideof foam.

(c) TMIS tankslaunchedlateinassembly sequenceto_ orbitalstaytime beforeTM]

burn (6 months - This orbital stay time increased because 90 day ETO

launch centers were used where possible).

(3) Mars ExcursionVehicle(MEV) ['VG2-03]

(a) Passivecryogenicstoragesystem:MLI withvapor cooledshields.

(b) Gravityfieldenvironment imi tesneed forzero-gacquisitionand vcnnng.

(c) Vacuum jacketed ascent tanks for Mars boiloff reduction.

2-1



(4) Reference Cryo/Aerobrake Configuration [VG 3-01]

(a) A core stage with "plug-in" propellant tanks. Tanks and corn stage rendezvous and dock

automatically. Core stage provides simple plumbing. Vehicle assembled in SSF orbit.

(b) M'T'V prop. 85,141 kg.

(c) TMI prop. 490,950 kg, inert stage 54,560 kg. Six liquid hydrogen/LOX tank sets (five

plus the core) each 7.4 mdia. x 15 m w/shielding.

-(5) Nuclear Thermal Rocket [VG 3-10]

(a) Vehicle assembled in SSF orbit. I..H2 propellant tanks.

('0) Earth Orbit Capture (EOC) prop. 27,756 kg,

Trans Earth Inject (TEl) prop. 59,245 kg.

One EOC/TEI common tank 10 mdia. x 19m, 13,845 kg.

(c) Mars Orbit Capture (MOC) prop. 151,680 kg.

Two tanks 10 m dia.x 17 m, 25,572 kg.

(These tanks were reduced to a one tank configuration with a mass value

equal to 60 roT).

(d) Trans Mars Inject (TMI) prop. 286,146 kg. Two tanks 10 mdia. x 30 ra,

43,092kg. (Valid for missions one through four only).

Mission Model

The followingmission model has been assumed forthe tradestudyevaluation.

(a) Seven missions with five non-reusable tank sets per mission. ( This was assessed to be

three tank sets for the minimum science missions and six tank sets for the full

science missions).
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SECTION 3

ORBITAL PROPELLANT DEPOT TRADES

This section reports on the orbital propellant depot trade evaluations of operational location,

accommodation selection (Space Station Freedom verses free flyer), and propellant wansfer

.methods. Passive verses active refrigeration was previously evaluated under the Long Term

Cryogenic Storage Facility Study and not repeated under this contract.

3.1 OPERATIONAL PROPELLANT DEPOT LOCATION

Of thefivelocationsidentifiedforthe cryogenicdepot,LEO representedthe lowestmass to orbit

and lowest operationalcomplexity of thechoicesof LEO, GEO, LibrationPoint2,and LLO. A

summary of the potentialdepot locationsisshown in the "Depot Location Sensitivity".The

reducedvehiclemass resultingfrom higherlaunchorbitsisnonethelesstoo smalltobalanceout the

largeincreasein ETO Mass requiredto ferryMTS and depot components, the resultbeing an

inc_ase in overallETO requirements.With no assumptionofLunar PropellantProduction,Lunar

vicinitylocationslosetheirappealdue totheabove reasoning.The complexity inherentlyinvolved

in a splitmission,LMO or Mars surfacelocation-fora cryogenic depot requiresmore detailed

attentionand has been coveredina separatesectionof thisreport.

Taking theabove reasoningintoaccountand allowingforman-tended personnelrexluirementsof a

cryogenic depot, a SSF co..orbitingaltitude in LEO was chosen tobe the bestsuitedtargetlocation

for a baselineof the depot trade.The added burden of establishingriskdue to and necessary

shieldingrcquiz_ againstmicromctcoroid and orbitaldebriswas recognizedand has been detailed

ina followingsectionillustratingshieldingrequJnm_nts.

3.2 SPACE STATION FREEDOM OR FREE FLYER DEPOT ACCOMMODATIONS

3.2.1 Introduction

Given th_ co-orbitingnann_ of thebaselinedepotlocation,two possibilitiesexist:co-locatingthe

nodm on SSF or utilizinga fre_-flying,co-orbitingd_pot. The issuesassociatedwith each arc

given in the chart "SSF Located vs. Separate Frec Flyer". Given the stringent requirements for

SSF microgravity experimentation and curr_nt efforts on the downsized space station

configuration, the large masses reflected in the depot component of the vehicle propellant

requirements point to the infeasibility of co-locating depot tanks on SSF. Vibrational distm'bances
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of both high and low frequency occurring during rnaringof the depot tanks,as well as the

comparable mass of the tanks with respectto station'sdownscaled overallmass, add severe

operationalcomplexity,to $SF operationsand may alsoleadtocontrolproblems due to thelarge

C.G. shiftcaused by incorporationof thetanks.

A sevaratcco-orbiRngfreeflyerconfigurationwould clearlyadd complexity tothem6-asu-uct-m'cas

the depot would incur separatepower, rcboostJdEboost,and GN & C requirements. These

-components have been incorporamd intothe model manifests. Addkional requirements arc

imposed by the co-orbimlgnatureoftheconcept. With respectm robouc operations,line-of-sight

bct'weenSSF and thedepot must bc maintained.Man-rended opmtions requi_ thatthedepot be

locate.dwithintherange of STS oroth= SSF-based personnelvehicles.

Due to the higherdensityand reduced cross-sectionof the depot configurationswith respectw

SSF, the ballisticbehavior of a freeflyingdepot poses the need for deboost as well as reboost

capability.The fasterdecaying orbitof SSF would cause itto falland accelerateaway from a

depot without theability,topace. The optionexistsforusinga 8:--.aflyreduced aerobrakeorother

drag-inducing device which could bc activelycontrolledto match orbitaldecay rams with SSF,

thus saving propellant aboard the depot and possibly eliminating the need for reboost capability of

thedepot.,relyinginsteadon LTV orsimilarvehiclestoprovidethe necessaryreboostthrustduring

SSF reboost phase.

32_2 OrbitalDebris Environmcm

With the selectionof LEO for the SSF, co-orbitingdepot location is linked the burden of

idenRfyingthe orbitaldebrisand micromew,oroidenvironmentand demrmining theresultantriskto

space su'ucnn'esso thatt.hcymay be sufficientlyshieldedfrom such threats.The orbitaldebris

environment issummarized inthecharts"OrbitalDebrisEnvixonmc_".

Although travelingath.vpcrvclocities(-20 kin/s),micrommemmid pm'ficlesdo not pose thelargest

threattotheintegrityof spacesu'ucmres.Theirrelativelysmallsizeand mass o_w thehigh

speeds with which they impact object.sin orbit.,connibu_ing mostly m pimng or abrasion of

protective coatings. Their random entry into earth annosphere makes for an evenly distributed

fltmncc, with no one orientation seeing a conc_n-_ion of impacts.

Orbitaldebrison the otherhand poses a greaterrisk.Originatingfrom imr,nlionalor ac,cidenml

fragmentation of payloads, spent rocket bodies,or jetnsoned payload e.quipment_these lar_

particlescarry sufficientvelocity(-7 kin/s)and mass to cause seriousdamage ifnot properly

protem.edagainst.In a reporton orbitaldebrisby theNationalSccurit7Council,dam f_m ground

-..j
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based telescopes, shuttle data, and recover_ sat_Ritcs (Solar Max, Palapa B) were used to model

the microrneteoroid and orbital dei:ris environment m LEO. Based on current launch rates, a model

forthe orbitaldebrisenvironment m 2010 was extrapolated,revealingthe predominance of the

orbital debris threat over that of the micrometcoroid threat.

A range of debris sizes from 1.4 cm was identified as the most threatening. Above or below these

sizes, methods to counter damage are through collision avoidance maneuvers or shielding,

respectively. However, due to the uncertainty inherent in current debris cross-sectional area

measurements, an order of magnitude uncertainty in par=cle size was considered appropriate to

determine impact probability. At the lower end of the range, the frequency of 0.1 cm objects

striking a space smactm_ located in LEO was determined to be .02 impacts per square meter • year,

which istherateemployed indeterminingimpactrisktovehiclesduringassembly.

3.2.3 Tmpact Risk

I

Given the configuration of the Cryogenic All Propulsive (CAP) and Nuclear Thermal Rocket

(NTR) Conjunction Class Mars Transfer Vehicles which a depot might support, overall cross-

sectional areas presented by the vehicle tanks were calculated and the probability of impact was

demrmined based on the highest fluence found for particles in the .1.4 cm.range, this being .02

impacts per square meter • year. This is shown in the chart "Impact Risk".

Based on the assumption of 90 day launch centersfordeliverymissions of vehiclecomponents,

the long durationon orbitleads to a good probabilityof impacts over the assembly l.igcof the

vehicle. Implicationsof such an impact on an unprotectedstructurearc serious. Penetration

resultingin lossof propellantcould spawn lossofvehiclecontroldue touncontrolledthrustingor

lossof crew member(s) due to suitcontamination. These issuesare covered explicidyin the

sectionon safetyissues.

Impact risk drives the depot configuration as shown in the chart "Shielding Considerations".

3.3 PROPELLANT TRANSFER MErHoD$

3.3.1 Innxxiuction

The advantages and disadvantages of =ansferring cryogenic propellants in zcro-g and artificia.l-g

environments are explored in this =ade study. The "Zcro-g Versus Arti_ficial-g Liquid Transfer

Trade Tree" outlines this trade study. Liquid hydrogen and liquid oxygen arc the propellants

considered (Cryo/Aerobrake coni=igm_on). The sensitivity of the results to only liquid hydrogen
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u'ansfers ('Nuclear Thermal Rocket com_m_rarion) is also examined. There are five main areas

revolved in liquid transfers: liquid acquisition, receiver tank chilldown, receiver tank filling,

transfer method, and p_ssure control. The "Liquid Transfer Options Versus Depot Concept"

shows that the technique selected for cash area is specific to the depot concept. There are a number

of techniques for acquiring liquid in zero-g, so these arc u'aded first to obtain the "best" zero-g

system. This "best" sysmm is then traded against other types of liquid transfer which are germane

to the particular depot concept.

3.3.2 Pr_eilant Acquisition Trade Analysis

3.3.2.1 _ The primary requirement for this trade is that pure liquid be supplied at the

tank outlet while in a zm'o-g environment. The fluids to be m'ansf_zTed are liquid oxygen and liquid

hydrogen. The supply ranks are assumed to be large eyIindrical type (>3m diameter).

3.3.2.2 Description of Candidate Desi_o_ Av_roaches. The zero-g propellant acquisition

candidates can be grouped into three broad classes: surface tension, positive expulsion, and other.

Surface tension devices include screened channels, single or double screen tank linings, and

perforated plates. These are commonly referred to as Liquid Acquisition Devices (LADs). These

devices rely on the surface tension to wic k only liquid to a tank outlet. Positive expulsion devices

include bladders, bellows, pistons, and diaphragms. The differences between bladders, bellows,

and diaphragms can be seen in "Three Types of Positive Expulsion Systems". All positive

expulsion devices physically move a barrier to expel liquid. Other dmriccs includes a wide range of

systems, such as fluid rotation (by paddle or tangential jets), tank rotation, dieiectrophoresis

(which relies on the dieieetric properties of the fluid to orient liquid and vapor within an elecmc

field), and acoustic/magnetic devices.

3.3.2.3 Comparison of Alternative Am_roaehes. Initial screening of the candidate approaches

eiiminated all but the five shown in "Propellant Acquisition Trade". Piston devices were eBrninar___

because of their inherent high weight and problems associated with their moving cryogenic seals.

Dieiectrophoresis was eliminated because no otxnational systems am available (although sueee_

tests were completed with Freon 113 and LN2 in KC-135 flights). Also further work needs to be

done to ensure safety for use with L02. Acoustic/magnetic devices were deleted from further

consideranon because attempts at demonstrating feasibility were

"Prc_llant Acquisition Trade" shows the results of the propellant acquisition trade. Ratings of 1-

5 were used with 1 being the best. Surface rznsion devices (LADs) are a clear winner, but the

i °
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other candidates are closely scored. Transfer time didn't turn out to be a discriminator because

they all can e .xpcl liquid at rr_ormblc rates.

The primary advantages of surface tension devices over the other systems are their low weight,

simplicity, fluid compatibility, and long useable lifetime. Although their use has not yet been

demonstrated with cryogenic fluids in zero-g. This presents some development risk since these

devices fail when a portion of the screen unwets and vapor can be drawn into the tank outlet.

Screen unwetRng with cryogens can be caused by heat transfer to screens which vaporizes Liquid.

-.--:.

Bladders provide a physical barrier between the liquid and the pressm'am. They arc a relatively

simple system. Data from previous development work (Reference i) indicates that coUapsing

bladders arc preferable to the expanding type. In the collapsing bladder system, the bladder

collapses around a perforated standpipe. Bladders have been used successfully in non-cryogenic

applications. Material compatibility problems presem a large development risk for use with LO2

and LH2. Materials which remain flexible at cryogenic temperatures are not completely safe with

LO2. A problem with using these bladders with LH2 is that the hydrogen can permeate the plies

and cause delamination when warmed back to ambient temperature. Some re.cent work has been

done with aluminum bladders for non cryogerdc fluids (Reference 6). If these could be applied to

cryogens, they could solve most of the problems.

Bellows can be cycled a large number of times (-1000 cycles) without fatigue especially at

cryogenic temperatures. Another advantage of this system is that k eliminates the need for a zero-g

mass gage because the amount of liquid can be correlated with the position of the bellows. A

major disadvantage of bellows is that they are heavier than other candichues. Manufacture of large

(> lm) diameter bellows presents a significant development risk.

The diaphragm consicler_ in this trade is a metallic reversing hemisphere. The primary ad',rantage

of this system is the low residuals (the lowest of the five systems considered in this trade). The

main disadvantage is the low number of reuse cycles (5-10 cycles).

The fluidrotationsysrmm consideredforthisu"adeusesarotatingpaddleratherthan tangentialjets.

The main advantage thissystem isthepositivepositioningof the liquidso thatmass gaging and

venting systems can be easilyincorporated.The primary disadvantagesarcthe need for a motor

drivesystem and thehighresiduals.Also thissystemisbettersuitedto sphericaltanks.

3.3.2.4 Sensitivities. If LH2 was the only propellant as in the Nuclear Thermal Rocket

configuration, the material compatibility problems associated with LO2 would be eliminated.

However, the surface tension system would still be the prcfcn'ed option.
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3.3.2.5 Conciusion aqd Recommendations. Tlae surface tension device system is recommended

as the best candidate for zero-g liquid acquisition. Zero-g, cryogenic testing/demonstration of

LADs are required prior to use in the Advanced Space Transportation Vehicle. The Cryogenic On-

Orbit Nitrogen Experiment (CONE), an STS flight experiment scheduled for 1995, will be testing

LADs with LN2. This will hopefulJy provide enough data to verify models and g_ve confidence to

I..H2 and LO2.

3.3.3 Depot Concept Trade Analysis

3.3.3.1 _ The requirements for this trade are the same as those for the propellant

acquisition trade. Namely that pure liquid be supplied at the tank outlet while in a zero-g

environment. The fluids to be u'ansfermd are liquid oxygen and liquid hydrogen. However, there

are not any constraints on the size or geometry of the supply tanks.

3.3.3.2 Description of Candidate Desima Approache_, The four depot concepts considered in this

n'ade are: non propulsive (zero-g), linear propulsive, rotating propulsive and tether. As shown in

"Liquid Transfer Options Versus Depot Concept", the latter three concepts all use the same

techniques for receiver chilldown, receiver fiUing, and pressure control The only difference being

that the rotating propulsive concept would not require pumps for transfer.

The non propulsive concept is our baseline and is shown in "Depot Concept for Support of CAP

Vehicle" and "Depot Concept for Support of NTR Vehicle" This baseline concept is essentially a

truss structure with large cylindrical tanks. The tanks com_in liquid acquisition devices (LAD's).

This passive depot concept was studied extensively under the Long Term Cryogenic Storage

Facility Systems Study.

The Linear propulsive concept consists of a structure with tanks mounted on it. Thrusters are

mounted on the structure to provide a linear thrust. The liquid can then be settled to one end of the

tanks. Settling would be required to acquire liquid from the supply tank and prior to any venting.

The rotating propulsive option consists of toroidal tanks which rotate about their centers.

Thrusters are required to provide rotation which forces the liquid to the outside of the tori. By

positioning the receiver tank at a radius grea_r than the radius of revolmion of the mrus, transfer

can oecm" without a pump.

The rather concept relies on the gravity gradient along a ra_lius fi'om the earth. If the depot has

tanks that are separated by a sizeable distance (e.g. dumbbell), then the axis of the depot will align

with the Earth's radius and will orbit at a velocity of the depot's center of mass. Since the liquid in
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the tank closest to the earth is traveling at a velocity, less than that reqmmd to keep it in omit at this

distance from the Earth, the liquid will be pulled toward the Earth. Similarly, in the tank furthest

from the Earth, the liquid is travcUing faster than r_uired to keep it at that distance from the Earth

so it is pulled away from the Earth. Thus, the Liquid serdes away from the center of mass of the

depot and settled operations can be pcrformexl.

3.3.3.3 Comparison of Alternative Approaches. The amount of propellant used with the

propulsive options is dependent on the number of transfers and ventings that are required. These

are in turn dependent on the number of missions, tanker capacities, etc. However, the propulsive

option presents the least technical risk as far as the fluid processes are concerned. The rotating

depot has the advantage that pumps are not required but there are a tot of other technicaJ risks

associated with this option.

The tetherconcept requires large tether lengths, for example, an artificial gravity of 10-3 g's would

require a tether length of 1.4 nautical miles from the center of gravity. The main advantages of this

concept are that it is passive and that settled cbRlldown, transfer, and pressure control techniques

can be used.

3.3.3.4 Recommendation. Further study is required to determine which of the concepts is best

overa//. However, the baseline concept presented elsewhere is the non propulsive (zero-g) system

due to the extensivestudy thatthisconcept received under the Long Term Cryogenic Storage

FacilitySystems Study. This tradeanalysisissummarized in the chart"Depot Concept Trade

Analysis".

3.3.4 References
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MISSION

SECTION 4

INTEGRATION AND MANIFESTING

This section presents a summary of the exploration scenarios for the Mars mission models

evaluated. Three fueling options were considered for each of the two Mars exploration scenarios.

This analysis helps establish depot capacities and identifies top level trends when a depot is

included in the LEO infrastruetm_.

4.1 EXPLORATION SCENARIOS

Two Mars mission models were supplied to use as references, they are termed the Minimum

Science Scenario and the Full Science Scenario. These two models of extraterrestrial exploration

differ greatly in scope, as their names might suggest. A comparison of the two scenarios will

show exactly how the two vary in terms of human presence, technology required, strategy, and

cost. The main points of this discussion are summarized in "Summary of Exploration Scenarios".

The Minimum Science Scenario is the less ambitious of the two, fulfilling a philosophy to visit

diverse sites on the Martian surface for brief human exploration. It comprises three missions over

the nine years from 2015 to 2023. The missions in each case are identical in operations and

hardware, but visit different Martian sites. Each is a conjunction class mission carrying six crew.

The Martian surface payload is delivered by two landers, and consists of crew accommodations for

30 days, two unprcssurized rovers that can be operated manually or telerobotically, and other

exploration tools. The MTV utilizes cryogenic liquid hydrogen (LH2) and liquid oxygen ('LOX)

propulsion, and is totally expended through staging during each mission. The crew eventually

renmas to Earth by Apollo-style reentry. This program is somewhat stand alone, meaning a non-

reliance on any dedicated space infa-asmaetu_.

The Full Science Scenario, on the other hand, places an emphasis on the establishment of long

term bases and extensive surface exploration. Two manned bases are founded during six missions

chat span from 2009 to 2023. Each mission is unique, and fulfills a particular step in the

establishment, expansion, and consolidation of the bases. This model also used conjunction class

missions, but the crew size increases from 6 to 12 on the fourth mission. In order to support all of

thisactivityatMars, the MTV udlizcs more advanced Nuclear Thermal Rocket (NTR) propulsion,

which is assumed to be mamm and man-rated by 2009. The propellantfor thispropulsion

technology is_ only. Another differencefi'umthe Minimum Science Scenario isthatmuch of

the MTV is refurbished and reused after its return to Earth vicinity. The reusable parts include the
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crew habitat, u'uss, reactor, engines, and shielding. For those missions which employ recycled

MTVs, only the payload, MEVs, and crew n_d to be delivcrr, d to orbit. Upon capture at Earth,

the NTR is inserted into a high orbit. An LTV must act as a ferry, bringing propellant to the NTR

for fine return m LEO, and remeving the crew returning from Mars.

4.2 FUELING OPTION EVALUATIONS

-A major considcrauon in the assembly and preparationof an MTV isto deliverthe propellant

required for the mission while accounting forthe amount of propellantlostduring the assembly

phase,which can atrimes bc significant.Four differentoptionsof fueldeliverywere derivedfor

analysis.The firstistermed the "directlaunch" scenario.The othersarc identifiedby the way in

which the MTV tanks are delivered,eitherwet, which means partlyfilled,or dry,which msans

only inch rank su'ucmreisdelivered,and thetankwillbc filledon orbit.For both thewet and dry

launch of vehicletanks,the auxiliarypropellantcan be provided from eithera tankeror a depot.

The options were prioririzedto reflectwhich wcrc most criticalfor comparison. Dry launch of

vehicle tanks was not addressed in thisstudy. Initialevaluationsindicamd thatdry launch of

vehicle tanks would requireadditionalETO deliveryflightsthatmay bc unnecessary. However,

latersafetyevaluationsshow a benefitfordry launchofvehicletanks.

In thedirectlaunch scenario,theMTV tanksarcmodified ineithercapacityor number to account

for the boiloffduring theremainder of the assembly phase. Itisdesiredtokeep the propellanm

storedon orbitfor as shorta durationas possible,so they are deliveredlastm the assembly site.

The mission will be ready for depm'un_ soon af_ the _ lank is delivered to orbit.

The tanker top off case assumes the MTV to be assembled with partlyfull _ in order to

m_,_m_ze ETO deliveryflights.The tanks are thenfilledto capacity,or topped off,from higher

capacitypropellantrankersasthefinalstopbeforedeparun¢. A pictorialsummary of thisoptionis

given in "Tanker Top Off Reference Mission". With thismethod of fueldelivery,the boiloff

penaltiesimposed by having the Im-g¢amounm of propellanton orbitforthe assembly phase are

avoided, while each ETO launch is stillbeing u"ulizedefficiently.The rankersused here are

essentially"dumb" tanks,carrying the mlnlm_m requirement of sU'ucun_,insu'umenmdon, and

insulation to maximize the propellant load for the given launch vehicle. For the Full Science

Scenario, the tanker need carry only LH2, but the/V[inlm1_ Science Scenario ranker has a dual

configuration, with both L,H2 and LOX. Upon arrival a_ the assembly m-ca, the l:n'opcIlant is

imme_ately uansferredtothevehiclerankswhere h resides un_l use.
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The depot top off case also seeks to decrease the boilofflosses,but through storagein better

insulateddepot tanksratherthan MTV vehicletanks.The depot isassumed to be deployed during

an independent operationthattakesplacepriortothefirstMTV clement launch. The depot tanks,

which arelaunched fulland expended afteruse aremaneuvered todepot proximity,by an advanced

upper stage. A telcroboticRMS would then grapple the tanksetand berth itto the depot truss.

These depot tanksetsaredeliveredaftertheM'rV/MEV hardware has been deliveredand integratccL

but before thelessefficientMTV tanks are launched to orbit.After the vehicletankshave been

deliveredand assembly iscomplete, the MTV undergoes checkout procedures atthe assembly

node. Itwillthen transferover to the depot under it'sown power for topping off,thendepartfor

Mars from thatlocation.A summary of the depot top off option ispresentedin "Depot Top Off

Reference Mission". Itshould bc noted thatthe depot inthe FullScience Scenario would need to

accommodate not only I.,H2for the NTR, but the LOX needed for the LTV rendezvous and

propellantdeliverymission.

All of thesefuelingoptions,directlaunch,tankertop off,and depot top off,were appliedto each

of the Mars explorationscenarios. The whole structureof thistradetreeis shown in the chart

"Depot Need Assessment Trade Tree". The dry launch options for fuel delivery,were not

considered,but are shown inthe figureforcompleteness.

4.3 MANIFEST ANALYSIS

A systematic approach to the analysisof each of the tradestudy cases was adopted and willbe

summarized here. "Case Analysis Approach" shows thisapproach. The firststepwas toidentify

the individualcomponents of the MEV and MTV, eitherCAP or NTR. Each element was

characterizedin terms of itsmass and packaged dimensions. These discreteelements were then

manifested in the launch vehicleina way thatminimized the number of E'TO flightsfordelivery.

The assumptions under which thisisdone are spelledout in "E'rO ManifestingGroundrules and

Assumptions". A complete listof vehiclecomponents and manifests for each HLLV flightare

listedin the charts"CAP Component Data" and "NTR Component Data". When consideringthe

manifesting of the wet MTV tanks,they were filledto whatever capacity was required to bring

down the ETO flightrequirement. Based on thisvehicle manifest, detailingthe amount and

deliveryschedule of the MTV tanks,the bolloffand transferlossescould be calculated.This was

done on the basisof a fiatpercentageper month forboiloffand a fixedpea'centratelostper metric

ton transferred.A tableof tankage dam used ispresentedinthe chart"PropellantTankage Data".

These threesteps,component identification,manifesting,and losscalculation,were common to

each analysis.What was done with thisdata,however, varied from case to case,as described

below.
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For the direct launch case, where the lost propellant must be delivered in the MTV vehicle tanks,

the losses were used to redistribute the propellant delivery by either resizing MTV tanks or adding

more of them. These new additions were then worked into the manifest as shown by the

directional arrow.

In the case of tanker top off, the boiloff and transfer losses were used to f'md the number of

propellant tanker missions required to top off the vehicle for departure. These tanker missions

were then added to the vehicle delivery manifest as the final mission before _parmm.

For the depot top off case, the propellant lost through boiloff or transfer had to be replaced with

fuel stored at the depot. For both the Minimum Science Scenario and Full Science Scenario, the

depot was sized to accommodate the largest propellant load required for any one Mars mission.

Once the depot is sized, the ETO flights that are necessary to restock the depot am included in the

ETO manifest before the MTV tanks am delivered.

4.4 INTEGRATION AND MANIFESTING RESULTS

An important indicator of the practicality and cost of a LEO system is the number of launch vehicle

flights required to place and maintain the system. The charts "Minimum Science Scenario ETO

Requirements" and "Full Science Scenario ETO Requirements" show these requirements for each

of the fuel delivery options.

The height of each bar shows the total number of flights per year, and the shading of each portion

of the bar indicates the specific type of payload carried. The order of ddivcry in each year

proceeds from the bottom of the bar to the top, and the numbers in each boxed division show

which mission the payload is to support. The order in which these items is important because it

impacts directly the amount of bofloff from dcliv_,d propellants. The tanks with the largest

boiloff rate or largest trmpeUant load am placed as close to the end of the manifest as possible.

It should bc noted that the propellant tanks for the CAP vehicle n_,.dcd to rcsizcd in the direct

launch case. The TMI tanks were taken to the capacity of the launch vehicle, 120 metric tons,

while maintaining the same tank mass fraction. With an upgrad_ capacity of 111 metric tons of

prol_Uant, boiloff during assembly could bc accommodated without additional tanks. The

MOCcTEI tanks were incm.asexl to 75 metric tons for the same mason.

To summarize the Minimum Science cases, the direct launch and the tanker top off scenarios both

require 11 I-K,LV flights for mission de.livca'y. The depot top off case requires a total of 12 HLLV

flights pea" mission. This is not surprising, considering the depot boiloff rate is only 0.2% per
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month lower than the MTV tanks. If the difference were greater, we may expect a greater benefit

from using the depot.

The results for the Full Science Scenario are presented in a similar format in "Full Science Scenario

ETO Requirements". A dramatic increase in the total number of flights is required by the larger

number of missions. Since som_ of these missions fall on successive conjunction opportunities,

pushing the ETO flight over the 4 per year that can be supported by one launch pad with a 90 day

turnaround. If launch facilities can be prepared no faster than 90 days, these results could serve to

justify the existence of at least two pads with associated equipment to support up to six launches

per year. A two pad scenario would seem a prudent alternative when considering the possibility of

catastrophic failure or surge operations. Even though two pads were necessary in scheduling these

flights, efforts were made to spread the flights equitably, rninirniTirlg the flights per year.

In considering the direct launch option, the NTR TN_ tanks had to be decreased to fit on a 120

metric ton launch vehicle completely full. Maintaining the same tanks mass fraction, these tanks

were reduced to 103 metric tons each, and three to four were required, rather than two. The aft

tank was increased to 75 metric tons from its previous capacity of 60 to allow for boiloff. Even

though all the propellam is being launched in wet MTV tanks, some tanker missions arc still

required to refdl the aft tank before reuse.

To summarize the resulting flight rate for the Full Science Scenario, the depot option requires one

additional ETO flight over the 17 year mission model than the tanker option, and two flight more

than the direct launch option. This is a significant improvement over the depot performance in the

Minimum Science Scenario, where the penalty was one flight per Mars mission. This

improvement is due largely to the fact that the difference between the depot and MTV tank boiloff

for hydrogen only is 1.0% per month, larger than the difference for the combined LH2-LOX

tanks.

Noticing this trend, a short sensi_vity trade was undertaken to furthea" investigate this relationship.

k was desim, d to chart the behavior of the system as the MTV tank boiloff rate was increased to two

times, then three times the reference value. In order to fully account for life cycle costs, the entire

Mars exploration scenario had to be considered. Because it is less intensive, the Minimum Science

Scenario was the first undcrmkc¢ due to rune consu'aints, only that scenario could be completezL

Only the tanker top off and depot top off fueling options were considered, because the direct option

may have necessitated drastic rede, s/gn of the propellant tanks, which would not only impact the

MTV design, but mission performance. Graphical results of this analysis are provided in "ETO

Flight Rate Sensitivity to MTV Boiloff". Over the complete mission model, increasing the MTV
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boiloff by a factor of three will add another 12 flights to the tanker case, but only three to the depot

case. This result is dramatic, but an even more exaggerated effect may be observed in the Full

Science Scenario.
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SECTION $

PROPELLANT DEPOT CONCEPTS

5.I LEO PROPEI/.A/qT DEPOT CONCEPTS

5.1.1 Concept Description

The depot concepts presented here reflect the current understanding of all-passive thermal

controlled, z.cro--g fluid transfer depot technology, which was initially pursued in the Long Term

Cryogenic Storage Facility (LTCSF) report issued by General Dynamics Space Systems in October

1988. Currently work has been conducted on zero-g and artificial gravity transfer of liquid

propellants which has been included within this report in a detailed section.

Four LEO orbital propcUant depot configurations were identified as potential candidates and are

shown in the charts, '`Depot Concept for Support of CAP Vehicle", "Depot Concept for Support of

NTR Vehicle", "ET Shielded Depot Configuration", and "'Gravity Gradient Stabilized Depot

Configuration".

Both CAP and NTR supporting depot configurations utilize a composite truss modeled on the

current Warren type (alternating battens) truss baselined for use on SSF due to its improved

torsional stability and single member failure tol_'ancc. It wiI1 be of a collapsible design to facilitate

stowage and deployment in order to minlmh,e. EVA requL,vmcnts. The keel section of the truss in

the N'rR configuration offers attach points for tank hardimint fixttu_s, yet offers little in the way of

strengthening, such that the members for'both configurations would be sized similarly by

flexibility and dynamics consuainl_.

Both concepts include all-passive, vented tanks. The CAP confi_u'ation makes use of three

200,000 lb _X tanks proscribed in the LTCSF study. The lar_t tank size was sol, ted

based cm payload lift capability. The NTR configuration makes use of nine all hydrogen tanks and

one oxygeaa tank to supply the MTV with hydrogen propellant as well as an LTV and the depot's

own r_boost thrusters with both hydrogen and oxygen for their bi-propcllant thrustea's. Both

configurations employ Vapor Cooled Shields (VCS's) in_ amongst MLI blankets for

passive cooling, utilizing boiloff from the hydrogen tanks as the heat transfer fluid within the VCS.

Both are zem-g transferconcepts which make use of a Liquid Acq_ Device (LAD).
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Thetanksare shielded by a separate, deployable "winged" shield comprised of aluminum sheet,

Nfl..I, and a stand off to protect against both micrometeoroid and orbital debris damage. Making

the shield out of a single sheet of aluminum is prohibitively weight consuming. By employing a

standoffin the design,cjectafrom the lessweighty outeraluminum barrierareredirectedatmore

incidentanglestothe innerMLI layerand over a largerareatominimize energy concentrationof

the mitiaJimpact. The MZ,I blankets then absorb the remainder of any energy imparted by

projectilespenetratingthe outer shield,thereby leaving the tank wall freefrom the shielding

•system. The shieldingismaintained separatelyfrom thetankstominimize cross-sectionaJarea and

weight as well and to avoid therecurringweight penalty involved with launchingthe shieldas a

portionof the tank. The winged configurationisemployed to shieldthe facesof the depot most

vulnerabletoimpact by orbitaldebrisas illustratedinthe chart"ShieldingConsiderations".The

45 ° angled wings attemptto cover the tanksfrom debriswhile minimizing surfacearea,and thus

weight.

Propellant requirements for the depots were summarized and shown in the charts, "CAP Depot

Configuration Propellant Requirements" and "NTR Depot Configuration Propellant

Requirements".

Tanks were sized according to manifested propellantneeds per vehiclemission. Some missions

requirethatMTV tanksbe launched partiallyf'tlledsuch thatthelaunchvehiclepayload envelope is

more fullyutilized,tanks being primarilymass ratherthan volume constrained.This "off-loaded

propcUant" isthen accounted forindepot capacity.Additionally,top offpropellantisused forfuel

which isoff-loadedfor mass constraintreasons. Boiloffand transferlosseswere alsocalculated

forthe fluidbased on theirlaunch sequence and durationon orbit.These components sum tothe

totalcapacitya depot must handle in order to supply each vehicle with itsfullcomplement of

propcllam prior to launch. The totalswhich were used to sizeboth depot configurationsare

presented in the charts "CAP Depot Configuration Propellam Requirements" and "NTR Depot

Configur_ion Propellant Requirements". h can be seen that an increase in pr_ellant need occurs

in Mission 5-6 for the NTR vehicle. The NTR depot configuration reflects this capacky.

However, for the first four missions, propellant requirements are such that only seven hydrogen

tanks need be supplied.

Solar power is generated by the deployable panels located at the ends of each truss. The panels

were sized based on a 400 W/rank need for the LH2 tanks and the 660 W/tank need demonstrated

by the LH2/LOX tanks as explained in the chart "Solar Panel/Power Parameters". Both employ

alpha and bern joints for sun u-acking. GaAs ceils are baselined for improved efficiency and

robusmess. On the CAP configuration,solarpanelsare locatedon the space sideof the depot to
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min/miz_ shadowing by the tank shielding. The NTR configuration u_Lizes larger solar panels

both for the increas_ pow_ demand represented by the _'eater number of ranks, and because of

the increased shadowing which occurs due to the large shield employed in the con_m.u'zcion.

Reboost capability, has been basclined as hi-propellant 100 lb thrusters which feed directly from the

depot's own stores, alleviating the need for large quantities of monopropellant and special

dezticated rcsupply missions. RCS is handled by two sets of 870 Ib hydrazme thruster pods. GN

& C is handled autonomously on board and is monitored at station through telemewy.,

5.1.20pemfional/_tegrafion Issues

In order to betterut.iLizcthe mass and volume capacityof the launch vehicle,itwas originally

believedthatmixing components from theMTV and depot would facilitatemanifesting.However,

itwas found thatsufficientflexibilityexistedintheextensiveMTV component listtoallow either

fullvolume or mass capacity utilizationwithout the need to mix components from the depot.

Furthermore, no immediate gain could be realizedby separatingthe LH2 and LOX tankswhich

comprise thepropellanttanksforthe CAP Configurationd_pou

In orderto avoid impacting theMTV assembly scheduleor assembly crew Io_, thedepot launch/

assembly should occur before inceptionof the MTV launch/assembly phase. Both assembly

phases would benefitfrom an initialplatform (eitherSTS or SSF) from which todeploy the truss

strucun'c.In orderto facilitat_thisdeploymenL then'usssmacture shallincorporatea deployable

designtomin_d:,_ _"VA dcmaJrlds.

Telemetry for onboard cqui_t must be incorpcz'm_ to allow man-tended, r_aote monitoring of

the depot systems, as no manned habitat or crew safe haven will be available at the depot. Life

support will be furnished by the crew wan_er vehicle only.

RMS isreq_ for n'zusferof the cryogenicstorageranksfrom theLTV or otherferryingsystem

to the depot upon orbital inserfim.

Rcboost,/dcboostoperations willbe monitored remotely. These engines willfeed from tank

residualsonboard the depot,necessitatingrcsupplymissions be Rm=d m coincidewiththercboost

phase.

These issues are s,_mnr_ in the chart "Opcr_o_I/Inmgradon Issues.

J
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5_ MARS PROPELLANT DEPOT ASSESSMENT

52.i Mars Depot Archimcnn'cConcept Options

Many Mars system depot architecture options arc capable of supporting a large, long-term Mars

exploration program. Several are shown in "Mars Depot Architecture Concept Options" along with

their potential propellant delivery routes (arrows).

Wherever primary propeUant production sites are located - Phobos, Deimos, or Mars surface - a

surface propellant depot capable of storing and protecting cryogens against the ambient

environmental conditions will be required. At least two orbital locations immediately suggest

themselves: low Mars orbit (LMO) and high Mars orbit (HMO); an HMO depot would have orbital

altitudes comparable to the moons. An LMO depot would be a logical alternative ff propellants

were originating on Mars, although it could also be supported from Phobos and Deimos.

Likewise, propellants originating on the moons would suggest the use of an HMO facility. The

most attractive option will be determined by specific Mars mission and program scenarios.

5.2.2 Mars Environmental Issues

Operating near and on Mars means encountering an entirely new set of orbital, thermal,

gravitational atmospherk:, and surface environments that can be crucial to the operation of a Mars

orbital propellant depot. Summarized in "Mars Environmental Issues", some of these parameters

are well-known but others have not yet been well-specified.

At 1.5 AUs from the Sun, Mars intercepts less than half of Earth's solar flux and this value varies

considerably due to Mars' orbital eccentricity (solar flux at Mars is 490 to 710 W/m2 ). The

average Bond albedo (0.16) results in the planet having much lower daytime and nighttime

blackbody surface tempcram.res than Earth, so objects in Mars orbit receive less thermal radiation

from Mars than they would comparable orbits around Earth. We have estimated that one of our

LEO depots would experience a 25% decrease in boiloff rate when in a similar Mars orbit (it's also

a function depot spatial orientation).

The general meteoroid environment near Mars is well-known from several spacecraft missions

over the last three decades. However, there are good theoretical reasons to suspect that belts of

dusts may exist in orbits near the satellite moons (particularly Phobos). These may pose a threat to

the integrity of any spacecraft or human exposed to them for too long. Plans for Mars depots must

anticipate and evaluate this potential threat to long-term, routine operations in these orbits.
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The _ planetary gravity field has sizeable irregularities thatare well chamcxenzed. However,

ff operations are contemplated near Phobos and Deimos, their complex local gravity field must be

beuer understood. We show in "Mars Environmental Issues" one theoretical solution for the

escape velocities as a function of location and direction on Phobos. They range from 3.5 m/s

toward Mars at the sub-Mars point to 15.5 m/s 90 de_ees away at the north pole. Deimos' _avity

variations am smaller in amplitude.

• Operating on the Mars surface itself is a complex, potentially dangerous, highly challenging

proposition. The 24 hour dim'hal cycle may drive the use of nuclear power on the surface. Diurnal

and seasonal variations in surface mmperaun'e and atmospheric propeixies will require careful

monitoring of cryogenic fluids being produced or stored near the surface.

5.2.3 Mars Depot Location Options

Five general locations (and 9 more specific regions) suggest themselves as potential locations for

Mars propellant depots; they arc: Mars orbit if:me space), Phobos, Deimos, Mars' surface, and the

Sun-Mars libration ('L) points. A preliminary list of advantages and drawbacks is shown for each

region in "Mars Depot Location Option Summary". This Mars depot study is not intended to

exhaustively assess the am'ibums of each location, but merely to present preliminary observations

and suggest fi'uiff-ul avenues for future analysis.

5.2.3.1 _ Each location is typically characterized by its environmental am-ibums, the

nearest location of primary propellant production, and its relation to the anticipated Mars system

infrastructure and exploration program. For example, three types of Mars orbits appear to be

potentially useful as sims for Mars propellant depots: I) high, elliptic and inclined orbits, 2) high,

circular, equatorial ('HMO, high Mars orbit) orbits, and 3) low circular orbits (LMO, low Mars

orbi0. High elliptical orbits typically will have orbital elements similar to incoming interplanetary

spacecr_t and provide a conve_t mechanism to execum plane changes. Because a depot would

only experience close approach= to Mars brieflyeach orbit., it would sufferrelativelymoderato

thermal loads. Nevcr_eless, these orbitsare probably the leastam'activesims for a propellant

depot because of theirrelativeinaccessibilityto the Mars surface, LMO, and even the

moons. Because incoming MTV orbits are also quite variable, it would be difficult to find an

optimal location in such an orbit that would be consistent with the anticipated Mars exploration

scenarios.

High circularorbits (i.e.those with scmimajor axes comparable to the moons) arc accessibleto

Phobos and Deimos and are far removed from the Mars thermal radiationsource. Vehicles
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ope_ting from clepots in these or_s would still face a high d_lra-v m Mars surface as well as some

unique microme_eoroid hazards; these are clue to regolith that has been propelled by impacts into

the complex Ma_-samllim gravity fields near the moons.

Low Mars orbi_ arc conveniem to surface opera_ions (the ul_aa_.e focus of any Mars program) and

the most likely location of primary propeUam production: the Mars surface. A depot in LMO also

experiences the most exn'cme thermal load due m Mars and must climb most of the Mars' gravity

-well to escape. Without an in-depth evaluation of all these factors, our preliminary suggestion is

that LMO seems the most likely location for an early depot within the Mars system.

5.2.3,2 Phobos and Deimos. The Martian moons provide many strategic and operational

advantages associatedwith theexplorationof Mars. Their very weak, milli-gfieldsand potential

forin sirepropellantproductionmake them potentiallypivotalearlym.rgctsforhuman exploration

and uRlization.Consistentwith the most rceem Earth-basedspectralevidence and dam from the

SovietPhobos probe,themoons of Mars are expected to possessbulk compositions characterized

by significantamounts of water, hydramd silicates,and hydrocarbons. Models of asteroids

(Phobos and Deimos may be capnnv,d asteroids)includethepossibilitythatsignificantground ice

could also exist. Theoreticalstudiessuggest thatifground ice ever existed in Phobos (and

pn:sumably on Deimos), itshould stillbc there.

Thus, in additionm being an accessiblepotentialprimary propellantproduction site,Phobos and

Deimos can alsoserve as thermal shadows from Mars and even provide a mHll.g gravityfieldfor

fluidacquisition. Because the moons have such low albedos, the factthattheirsurfaces are

exposed tointerplanetaryspace does not guaranmc them exu'emcly low mnpemun_s. Indeed,heat

conduction from Phobos or Deimos themselves may ncuu'alizeany anticipatedadvantages of

locaRng the depot near or on theirthcrmally-shekcredan_i-Mars sides. Itisalso impozum to

realizethatthe low-gravity,dust-filledenvironments of Phobos and Deimos are very unusual and

by the _ humans venture forthto Mars itisunlikelythatany human opcn_ons database will

for such objects.These challengessuggesta morn cautiousapproach m the exploitationof

the _ moons than theirbareviral_cs might suggest.

_c depots might alsobe Iocamd near (binnot acumlly on) Phobos or Ddmos. Stableorbits

areknown m existaround thesetinyobjectsand theirvery mi,_im_!localgravityfieldmight make

stacionkeepinga viableoption. While much of the Mars thin-realshieldmight be forfeimd,the

major advantage of a near-san:Rimorbitallocationwould be to avoid the complex surfacetin'rain

and environn_nml hazards of themoons each Rm¢ avehiclexr,ndczvons with the depot. However,
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it should be noted that wherever propellant depots are located, some storage/transfer function will

be required for use of the propellants in MEVs and MTVs.

52.3.3 The Mars Surface. The most likely site for some type of primary, propellant production is

on the surface of Mars using the regolith and/or the atmosphere. The 1/3 g surface gravity field

should make fluid and human operations relatively normal. A Mars surface depot would not have

most of the flight subsystems required of an orbital facility. However, the Martian surface

environment - parucularly its thermal radiation - will provide the biggest challenges for pr_ucing

and storing cryogenics. Surface atmospheric conditions (including 24-hour diurnal cycles) will

probably require use of nuclear systems for power, unlike the situation for orbital depots. One

solution to large expenditures for power is to store the future cryogenics as water and them

split/liquify them as their use requires.

For completeness, the Sun-Mars L points are included as potential depot locations. The L1 point,

being over one million ]an from Mars, will not have a significant planetary thermal problem, and

the location is conducive to interplanetary operations. Nevertheless, the site is sufficiently remote

from the Mars propellant production locations and the remainder of the Mars infrastructure to call

into question whether these L points possess any real potential for a major eonlzibution to any near-

term Mars exploration program.

5.2.4 LEO-Mars Depot Commonalities

5.2.4.1 Preliminary /kssesxment. System, technology, and operational similarities between

depots planned for potential Martian use and those contemplated for LEO arc important

considerations. If significant commonalities exist between LEO and Mars systems, and if a

mission indeed exists for a Mars depot, then cost and schedule savings might be obtained. This

top-levellook ateommonaliti_ suggeststhat,insome locations near Mars, theLEO system might

be ovcrdesigned and susceptibletosignificantu'ansferenc¢.Conversely,itisalsopossiblethatthe

identif'w.ation of both an importantmission fora depotatMars coupled with significantLEO-Mars

depot commonalities, might influence planners to re_-corrm_nd that such a depot be builteven if the

case for a LEO depot is only marginal. "LEO-Mars Depot Commonalities . Preliminary

Assessment" shows our initialassessment of the likelycommonalities between LEO and Mars

depots for the major subsystems and operationsat four general Mars locations('Phobosand

Dcimos arcconsideredtogether).

5.2.4.2 Ma_ior Subs'vmem_. Our baseline thermal management system is all passive and vented.

A similar system might be used in either LMO or HMO where the boiloff due to planetary thermal
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radiation will be less than in LEO. Particularly in LMO, a Martian depot might benefit from the

capability,toavoid orreliquefyany boiloffdue tothe scarcity,of Martian propcUants and/orbecause

of the presence of scienceinstrumentsor manned operationsin the vicinityof the depot. Itis

unlikelysuch considerationswillbc importanton thedusty,milli-gworlds of Phobos and Deimos,

although the long-term storageof cryogenics on Mars itselfwillprobably requirerefrigeration.

Another alternative is to produce water from planetary raw materials and then store it until a short

interval before the propellants are required, when the water would be split and liquefied. This

would require considerable schedule knowledge and control.

With the exception of the Mars surface and itsmoons, allMartian orbitscould offer zcro-g

conditionsfor fluidacquisitionand transfersimilarto the case for LEO systems. While tank

changeout isenvisioned for LEO, thisrequiresa powerful RMS such as thatat SSF and itis

unclearwhether such a system willbe availablenearMars. In itsabsence,fluidn"ansferwould bc

thepreferredtccb.nique.On the surfaceseithertechniqueshouldbe possible.

Nuclear power systems seem preferableon planetaryand satellitesurfacesbecause oftheirdiurnal

cyclesand atmospheric environments. Iffrequentoccultationsby Mars area problem inLMO, its

depot might alsore.quireanuclearsystem. HMO isnot frequentlyoccultedby Ma._.

Presently,the orbitalenvironment of Mars does not sufferfrom debrishazards as such although

thereisa naturalmicrometcoroid population.In particular,the orbitsof Phobos and Deimos are

likelyto featureenhanced dust lanes because of impacted regolithpreviouslyresidenton the

moons' surfaces.

As inLEO, a depot near Mars willprobably re,quirea TDRSS-Iike sysmm to supportit.Depots on

Mars or Phobos and Dcimos willhave well-definedsurfacelocations.Itisalsolikelythatdepot

reboostrequirements inLMO willbc much lessthan thoseinLEO due toMars' relativelythin(6

rob)atmosphere.

Unlike LEO depots, it may be more efficient to locate science payloads on or near the Mars vicinity

depot. As has already been indicated, this can have significant effects on depots subsystems and

operations.

5.2..5Conclusions and IssuesFor FurtherStudy

"Issues For Fm'ther Study" lists a few major areas that could benefit from more study to further

define the potential role for a Mars propellant depot.
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TheMinimum Science Program and Full Science Scenario are only two of the many scenarios that

can be envisioned for human Mars exploration programs. It is unlikely that a Mars propellant

depot would be required for the former, but any science, resource, or seRlement scenario that

anticipates signLficam operations near and/or on Mars will necessitate the use of in situ resources,

in particular the in situ production of propellants. A depot can be a logical step in many of them.

Ther_ is the suggestion from this analysis that a Mars depot should be examined further.

. It is clear that several of the options for a Mars depot architecture are attractive and should be

probed and evaluated. It is tempting to suggest that the Martian moons are so accessible,

approachable, and wet that they should preempt all other potential targets for early human

exploration and utilization. However, their unusual, potentially threatening environments may

weaken many of their obvious advantages and drive us to the surface of Mars for more Earth-like

working environments. This question needs much more study.

In addition to the locations of the primary propellant production sites, the Mars depot architecm_ is

also influenced by environmental, space infrastructure, and exploration program considerations.

The problem is interwoven in a complex way with all the other complicated exploration and

architecture plans for Mars.

It is Likely that depots in orbit around Mars could share much commonality with those in LEO.

However, surface systems will be different in many ways. Before the influence of commonality

can be realistically ascertained, the role of propellant depots in the Mars exploration program must

be more fully defined.

It is possible that depots near Mars will be enhanced by or r_tu/.,'e new technologies. For example,

higher system reliability and mor_ autonomy would be valuable at Mars. Likewise, depots capable

of interfacing with propeUant production facilities on Mars or its moons must eventually be

developed. If depots are located on or near Phobos or Deimos, new depot technologies will have

to accomamdam these en_ts.

5.3 EVALUATION OF ON-ORBIT SAF'EFY HAZARDS

The key safety hazards associated with orbital vehicles and supporting systems have been

identified and provide a source of concern for on-orbit opexations and possible vehicle loss with

consequent Mars mission disruption. These issues are presented in "Key Potential Vehicle Safety

Hag_'d$'.
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An L_po_t hazard is the threat of the pressurized propellam tanks i_coming inadvertently

propulsive. This is possible if a meteoroid or space debris impact and punctures the vehicle tanks.

A rupture due to overpressur/zation could have a similar effect. We do not consider ignition to

a Likely possibility in space because of the need for appropriate pressurization and igr_ition energy.

It is possible to obviate these hazards by appropriately shielding the vehicle tanks or providing a

propellant depot as shown in "Depot Advantages in Safew Hazards Abatement" with adequate tank

shielding and monitoring the evolution of pressure within the structures. Providing a propellant

depot to fuel-up the Mars vehicles just prior to mission operation allows the vehicle tanks to be

empty during most of the stay time in LEO orbit, thereby reducing the probability of occurrence of

a catastrophic event.

Hazards during EVAs are potentially dangerous for the crew. This is particularly important for the

case of tank leaks that physically contact the EVA suits. Accidental fu'ing of a thruster near a

crewperson must also be avoided. Avoiding leaks, monitoring EVAs, and making the times of

thrustng and EVAs mutually exclusive will help.

If tank changeout is the transfer mechanism of choice then a large R.MS will be a requirement, and

with it the possibility of a malfunction and accident. Likewise, if we eliminate the shuffling of large

tanks, large volumes of propellants wi.11have to be pumped into empty vehicle tanks. Care must be

taken to execute these sequences nominally and, when possible, minimally.

Nuclear vehicles become hazardous when in the vicinity of other systems because of their radiation

fieldsassociatedwith theirre.actors.Proximity operationrulesmust be establishedfor nuclear

vehicles (particularlyinLEO) as well as appropriateshieldingof humans and vitalcomponents

from theirradiations.
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RISK ANALYSES

Risk analyses were conducted to develop an initial risk assessment for the various architectures.

This presentation of risk analysis results considers development risk, man-rating requirements, and

several aspects of mission and operations risk.

Development Risk

All of the architectures and technologies investgated in this study incur some degree of

development risk; none are comprised entirely of fully developed technology. Development risks

are correlated directly with technological uncertainties. We identified the following principal risks:

Cryogenics. High-performance insulation systems involve a great many layers of multi-layer

insulation (MLI), and one or more vapor-cooled shields. Analyses and experiments have indicated

the efficacy of these, but demonstration that such insulation systems can be fabricated at light

weight, capable of surviving launch g and acoustics loads, remains to be accomplished. In

addition, there are issues associated with propellant transfer and zero-g gauging. These, however,

can be avoided for early lunar systems by proper choice of configuration and operations, e.g. the

tandem-direct system recommended elsewhere in this report. This presents the opportunity to

evolve these technologies with operations of initial flight systems.

Engines - There is little risk of being able to provide some sort of crTogenic en_ne for lunar and

Mars missions. The R.L- 10 could be modified to serve with little risk; deep throttling of this engine

has already been demontrated on the test stand. The risk of developing more advanced engines is

also minimal. An advanced development program in this area serves mainly to reduce development

cost by pioneering thecritical features prior to full-scale development.

Aerocapture and aerobraking - There are six potential functions, given here in approximate

ascending order of development risk: nero descent and landing of crew capsules returning from the

Moon, aerocapture to low Earth orbit of returning reusable lunar vehicles, landing of Mars

excursion vehicles from Mars orbit, nero descent and landing of crew capsules returning from

Mars, aerocapture to low Earth orbit of returning Mars vehicles, and aerocapture to Mars orbit of

Mars excursion and Mars transfer vehicles. Figure x.x provides a qualitative development risk

comparison for these six functions.
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Aerocapture of vehicles requires large aerobrakes. For these to be efficient, low mass per unit area

is required, demanding efficient structures made from very high performance materials as well as

efficient, low mass thermal protection materials. By comparison, the crew capsules benefit much

less from high performance structures and TPS.

Launch packaging and on-orbit assembly of large aerobrakes presents a significant development

risk that has not yet been solved even in a conceptual design sense. Existing concepts package

poorly or are difficult to assemble or both. While the design challenge can probably be met,

aerobrake assembly is a difficult desi_ and development challenge, representing an important area

of risk.

Nuclear thermal rockets - The basic technology of nuclear thermal rockets was developed and

demonstrated during the 1960s and early 1970s. The development risk to reproduce this

technology is minimal, except in testing as described below. Current studies are recommending

advances in engine performance, both in specific impulse (higher reactor temperature) and in

thrust-to-weight ratio (higher reactor power density). The risks in achieving these are modest

inasmuch as performance targets can be adjusted to technology performance.

Reactor and engine tests during the 1960s jetted hot, slightly radioactive hydrogen directly into the

atmosphere. Stricter environmental controls since that time prohibit discharge of nuclear engine

effluent into the atmosphere. Design and development of full containment test facilities presents a

greater development risk than obtaining the needed performance from nuclear reactors and entries.

Full- containment facilities will be required to contain all the hydrogen effluent, presumably oxidize

it to water, and remove the radioactivity.

Electric Propulsion Power Management and Thrusters - Power management and

thrusters are common to any electric propulsion power source (nuclear, solar, or beamed power).

Unique power management development needs for electric propulsion are (1) minimum mass and

long life, (2) high power compared to space experience, i.e. megawatts instead of kilowatts, (3)

fast arc suppression for protection of thrusters. Minimizing mass of power distribution leads to

high distribution voltage and potential problems with plasma losses, arcing, and EMI. Thus while

power management is a mature technology, the unique requirements of electric propulsion

introduce a number of development risks beyond those usually experienced in space power

systems.
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Electric thruster technology has been under development since the beg-inning of the space program.

Small thrusters are now operational, such as the resistance-heat-augmented hydrazine thrusters on

certain communications spacecraft. Small arc and ion thrusters are nearing operational use for

satellite stationkeeping.

Space transfer demands on electric propulsion performance place a premium on high power in the

jet per unit mass of electric propulsion system. This in turn places a premium on thruster

efficiency; power in the jet, not electrical power, propels spaceships. Space transfer electric

propulsion also requires specific impulse in the range 5000 to 10,000 seconds. Only ion thrusters

and magnetoplasmadynamic (MPD) arc thrusters can deliver this performance. Ion thrusters have

acceptable efficiency but relatively low power per unit of ion beam emitting area. MPD thruster

technology can deliver the needed Isp with high power per thruster, but has not yet reached

efficiencies of interest. Circular ion thrusters have been built up to 50 cm diameter, with spherical

segment ion beam grids. These can absorb on the order of 50 kWe each. A 10 MWe system would

need 200 operating thrusters. The development ahernatives all have significant risk: (1) Advance

the state of the art of MPD thrusters to achieve high efficiency; (2) Develop propulsion systems

with large numbers of thrusters and control systems; or (3) Advance the state of the art of ion

thrusters to much larger size per thruster.

Nuclear power .for electric propulsion . Space power reactor technology now under

development (SP-100) may be adequate; needed advances are modest. Advanced power

conversion systems are required to obtain power-to-mass ratios of interest. The SP-100 baseline is

thermoelectric, which has no hope of meeting propulsion system performance needs. The most

likely candidates are the closed Brayton (gas) cycle and the potassium Rankine (liquid/vapor)

cycle. (Potassium provides the best match of liquid/vapor fluid properties to desired cycle

temperatures.) Stirling cycle, thermionics, and a high- temeperature thermally-driven fuel ceil are

possibilities. The basic technology for Brayton and Rankine cycles are mature; both are in

widespread industrial use. Prototype space power Brayton and Rankine turbines have run

successfully for thousands of hours in laboratories. The development risk here is that these are

very complex systems; there is no experience base for coupling a space power reactor to a dynamic

power conversion cycle: there is no space power experience base at the power levels needed; and

these systems, at power levels of interest for SEI space transfer application, are large enough to

require in-space assembly and checkout. Space welding will be required for fluid systems

assembly.
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Solar power for space transfer propulsion . Solar power systems for space propulsion

must attain much higher power-to-mass ratios than heretofore achieved. This implies a combination

of advanced solar cells, probably multi-band-gap, and lightweight structural support systems.

Required array areas are very large. Low-cost arrays, e.g. $100/watt, axe necessary, for affordable

system costs, and automated construction of the large area structures, arrays, and power

distribution systems appears also necessar3,. Where the nuclear electric systems are high

development risk because of complexity and the lack of experience base at relevant power levels

and with the space power conversion technologies, most of the solar power risk appears as

technology advancement risk. If the technology advancements can be demonstrated, development

risk appears moderate.

Avionics and software - Avionics and software requirements for space transfer systems are

generally within the state of the art. New capability needs are mainly in the area of vehicle and

subsystem health monitoring. This is in part an integration problem, but new technoques such as

expert and neural systems are likely to play an important rote.

An important factor in avionics and software development is that several vehicle elements having

similar requirements will be developed, some concurrently. A major reduction in cost and

inte_ation risk for avoimcs can be achieved by advanced development of a "standard" avionics and

software suite, from which all vehicle elements would depart.

Further significant cost savings axe expected from advancements in software development methods

and environments.

Environmental Control and Life Support (ECLS) . The main development risk in ECLS

is for the Mars transfer habitat system. Other SEI space transfer systems have short enough

operating durations that shuttle and Space Station Freedom ECLS system derivatives will be

adequate. The Mars transfer requirement is for a highly closed physico-chemical system capable of

3 years' safe and dependable operation without resupply from Earth. The development risk arises

from the necessity to demonstrate long life operation with high confidence; this may be expensive

in cost and development schedule.

Man-Rating Approach

Man-rating includes three elements: (1) Design of systems to manned flight failure tolerance

st_{ndards, (2) Qualification of subsystems according to normal man-rating requirements, and (3)
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Flight demonstration of critical performance capabilities and functions prior to placing crews at

risk. Several briefing charts follow: the first summarizes a recommended approach and lists the

subsystems and elements for which man-rating is needed; subsequent charts present recommended

man-raring plans.

Mission and Operations Risk

These risk categories include Earth launch, space assembly and orbitasl launch, launch windows,

mission risk, and mitigation of ionizing radiation and zero-g risks.

Earth launch - The Earth launch risk to in-space transportation is the risk of losing a payload

because of a launch failure. Assembly sequences are arranged to minimize the impact of a loss, and

schedules include allowances for one make-up launch each mission opportunity.

Assembly and Orbital Launch Operations - Four sub-areas are covered: assembly, test and

on-orbit checkout, debris, and inadvertent re-entry.

Assembly operations risk is reduced by verifying interfaces on the ground prior to launch of

elements. Assembly operations equipment such as robot arms and manipulators will undergo space

testing at the node to qualify critical capabilities and performance prior to initiating assembly

operations on an actual vehicle.

Assembly risk varies widely with space transfer technology. Nuclear thermal rocket vehicles

appear to pose minimum assembly risk; cryo/aerobraking are intermediate, and nuclear and solar

electric systems pose the highest risk.

Test and on.orbit checkout must deal with consequences of test failures and equipment

failures. This risk is difficult to quantify with the present state of knowledge. Indications are: (1)

large space transfer systems will experience several failures or anomalies per day. Dealing with

failures and anomalies must be a routine, not exceptional, part of the operations or the operations

will not be able to launch space transfer systems from orbit; (2) vehicles must have highly capable

self-test systems and must be designed for repair, remove and replace by robotics where possible

and for ease of repair by people where robotics cannot do the job; (3) test and on-orbit checkout

will run concurrently with propellant loading and launch countdowns. These cannot take place on

Space Station Freedom. Since the most difficult part of the assembly, test and checkout job must

take place off Space Station Freedom the rest of the job probably should also.
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Orbital debris presentsrisk to on-orbit operations. Probabilities of collision are large for SEI-

class space transfer systems in low Earth orbit for typical durations of a year or more. Shielding is

mandatory. The shielding should be designed to be removed before orbital launch and used again

on the next assembly project.

Creation of debris must also be dealt with. This means that (1) debris shielding should be

designed to minimize creation of additional debris, especially particles of dangerous size, and (2)

operations need to be rigorously controlled to preventinadvertent loss of tools and equipment that

will become a debris hazard.

Inadvertent reentry is a low but possible risk. Some of the systems, especially electric

propulsion systems, can have very low ballistic coefficient and therefore rapid orbital decay rate.

Any of the SEI space transfer systems will have moderately low ballistic coefficient when not

loaded with propcUant. While design details arc not far enough along to make a quantitative

assessment, parts of these vehicles would probably survive reentry to become ground impact

hazards in case of inadvertent reentry. For nuclear systems, it will be necessary, to provide special

support systems and infrastructure to drive the probability of inadvertent reentry, to extremely low

levels.

Launch Windows - Launch windows for single-bum high-thrust departures from low Earth

orbit are no more than a few days because regression of the parking orbit line of nodes causes

relatively rapid misalignment of the orbit plane and departure vector. For lunar missions, windows

recur at about 9-day intervals.

For Mars, the recta'fence is less frequent, and the interplanetary window only lasts 30 to 60 days.

It is important to enable Mars launch from orbit during the entire interplanetary window. Three-

impulse Mars departures make this possible; a plane change at apogee of the intermediate parking

orbit provides alignment with the departure vector. Further analysis of the three-bum scheme is

needed to assess penalties and identify circumstances where it does not work.

Launch window problems are generally minimal for low-thrust (electric propulsion) svstems.

Mission Risk - Comparative mission risk was analyzed by building risk trees and performing

semi-quantitative analysis. The next chart presents a comparison of several mission modes; after

that are the risk trees for these modes.
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Ionizing Radiations and Zero G - The threat from ionizing radiations is presented elsewhere

in this document. Presented here are the mitigating strategies for ionizing radiations and zero g.

Nuclear systems operations present little risk to flight crews. Studies by University of Texas at

Austin showed that radiation dose to a space station crew from departing nuclear vehicles is very

small provided that sensible launch and flight strategies are used. On-board crews are protected by

suitable shieding and by arrangement of the vehicle, i.e. hardware and propellant between reactors

and the crew and adequate separation distances. After nuclear engines are shut off, radiation levels

drop rapidly so that maneuvers such as departure or return of a Mars excursion vehicle are not a

problem. On-orbit operations around a returned nuclear vehicle are deferred until a month or two

after shutdown, by which time radioactivity of the engine is greatly reduced.

Reactor disposal has not been completely studied. Options include solar system escape and parking

in stable heliocentric orbits between Earth and Venus.

Crew radiation dose abatement employs "storm shelters" for solar flares, and either added

shielding of the entire vehicle or fast transfers (or both) to reduce galactic cosmic ray exposure.

Assessments are in progress; tradeoffs of shielding versus fast trips have yet to be completed.

Expected impact for lunar missions is negligible and for Mars missions, modest.
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Man Rating Requirements

The facing page describes our recommended approach to man-rating and lists the systems/
subsystems for which we believe man-rating is required. Following pages present
recommendations for man-rating programs for all but four of the systems. Three of those not
presented (Crew modules/hab systems, Vehicle power, and Surface transportation) are judged
suited for man-rating by normal space qualification means. If advanced technologies are adopted
for any of these, a specific overall man-rationg program should be defined.

The fourth is not presented because there are basic questions as to overall approach. This is the
need for vehicle health monitoring and on-board maintenance systems. This is a mix of
subsystems technology and health monitoring and diagnostics technology. A key issue here is to
select the general technical approach: (a) what kinds of sensors, (b) what kidns of subsystem
models, (c) what kinds of logic (fault detection by sensors vs. inference of failures through
system/subsystem state comparison with math models of normal and degraded performance), and
(d) what new technologies (expert systems; neural nets) and how these can be integrated into an
overall health maintenance architecture and validataed for safe and successful use on long-duration

missions. The need goes beyond health monitoring and diagnostics; it is also necessary to develop
an on-board maintenance .kystem that can instruct the crew how to perform maintenance and how to
perform any testing not built in to the health monitoring system. Demonstration of the overall
capability for Mars missions is included on the Mars avionics chart.

Man-Rating Approaches

A set of charts present recommended man-rating approaches for aerobrakes, cryogenic rocket
engines, nuclear rocket engines, cryogenic propellant system, auxiliary (attitude control)
propulsion systems, nuclear and solar electric propulsion systems, ECLSS, and Avionics and
communications systems.

The aerobraking approach makes use of the lunar tandem LTV booster as a full-size lunar
aerobrake tcstbed, together with reliance on ground-test facilities and CFD. The Mars aerobrake is
qualified on an unmanned cargo delivery mission.

The cryogenic rocket engine program is a conventional one of technology demonstration, flight
hardware qualification, and flight demonstration.

A sequence of major tests and demonstrations to achieve nuclear rocket man-rating is shown next.
Note that two flight demonstration options exist. A decision of which to use depends on whether
cargo delivery to Mars is needed before the first manned mission, as would be the case if a
conjunction fast transfer and long surface stay is required on the fwst mission to reduce galactic

cosmic ray exposure to the crew.

The cryogenic propellant sequence relies on the fact that the STCAEM baseline initial lunar system,
tandem-direct, does not need zero-g propellant transfer or gauging; this allows more time for
development of these challenging technologies.

The auxiliary propulsion assumes that an advanced technology using cryogenic propellants from
main tanks is adopted. If conventional storable propulsion technology is used, a conventional
qualification program is sufficient. Storable technology is mature enough that flight demonstration
is not needed.

The nuclear and solar electric program is the most complex depicted here, in part because in
includes both nuclear and solar power generation technology. As presented here, a choice between
nuclear and solar power generation is made in the late 1990s after technology demonstrations.
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ECLSS man-rating includes conventional physico-chemical and CELSS systems. Whether
CELSS benefits long-duration transportation system crew habitats has yet to be determined. This
presentation assumes that an integrated ECLSS development for surface and transportation systems
will occur.

The avionics program presumes a standard avionics architecture with unique appendages for
unique requirements such as Mars aerocapture GN&C.
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Technology Development Concerns and Schedules. Cryogenic /

Aerobraked Vehicle

Critical technology development issues relating to the reference CAB vehicle are
presented in this section. Where applicable, the same charts are also included in the NTR,
NEP, and SEP IP&ED documents. The focus of this section will be to bring out the most

important issues relating to the reference cryogenic vehicle, and to present preliminary
technology development schedules for these issues. The issues are presented here in outline
form, beginning with the most important, with accompanying schedules wherever
possible.

Aerobraking (low & high energy)
The technology category which offers the most potential vehicle benefits but which

presents the highest degree of technology development uncertainties, is the area of high and
low energy aerobraking. This area presents a variety of issues for technology development
including high strength to mass ratio structural materials, high temperature thermal
protection systems, avionics, assembly and operations, hypersonic test facilities and
computer codes, and Mars atmosphere prediction. High strength structural material options
include metal matrix composite, organic matrix composite, and advanced carbon-carbon
elements. Other structural considerations include load distribution and attachment of

payload for aerocapture, and ETO launch and assembly of large structures. Thermal
protection systems issues include low mass ablative and reradiative materials, and
structure/TPS integration issues. The aerobrake maneuver will place considerable demands
on the vehicle avionics system with the need for real time trajectory analysis, and vehicle
guidance and control. The launch and assembly of the large aerobrake structure will present
ground and space operations problems which will require technology and advanced
development in both the areas of design and operations. Finally, computational analysis
and atmosphere prediction capability will be critical in the development of a man-rated
aerobrake for Mars use. A preliminary development schedule for Lunar and Mars aerobrake

technology development is presented. It includes the major milestones for both ground and
flight testing. The points where a Lunar and Mars full scale development decision can be
made are also highlighted on the schedule.

Cryogenic Propulsion and Fluid Management
Cryogenic propulsion and long term fluid management technologies offer mission

vehicle benefits over lower performance storable propulsion systems, comparable to those
provided by high energy aerobraking. The high Isp of a I.,H2-LOX system (460-480 s) can
reduce vehicle IMI.,EO greater than 50% over the lower Isp (280-360 s with metallic gels)

storable systems. The long term storage and low-g fluid management of cryogenic fluids,
along with long lifetime, in-space restartable cryogenic engines are the major technology
development concerns for a cryogenic.ally fueled vehicle. Preliminary technology schedules
are presented for space based cryogemc engines, and cryogenic fluid system development
for both Lunar and Mars applications. The cryogenic space based engine development
effort begins with the planned AETB work at LeRC, and continues on to development
work for a large engine for Mars applications. The cryogenic fluid systems schedule
includes Earth-based thermal control and selected management (tank pressure control,

liquid acquisition device effectiveness, etc.) tests, as well as planned flight experiments to
carry out system and subsystem validation tests.

,0
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Vehicle Avionics and Software

Although the technology readiness level of vehicle avionics and software is ahead
of many of the other technology areas listed in some respects, the demands on the system
in the areas of processing rate, accuracy, autonomous operation, and status/health
monitoring will drive technology and advanced development in areas not fully defined at
this point. Software requirements cannot be fully determined until the vehicle design is at a
more finished stage than the current levels. A preliminary schedule for autonomous
systems development is presented. The decision points for full scale development The
communications system options can bc more fully defined before a final vehicle design is
produced, however. A technology development schedule for advanced communications is
presented.

Life Support
A rehablc, redundant long term life support system will be enabling for future

explorationmissions.The degree of closureof,and the reliabilityof the system arc the

major technologydevelopment concerns.Low-g human factorsdeterminationwillalsobc

an important technology considerationwhich willdrive vehicledesign.An integrated

scheduleof themajor ar_asof the lifesupporttechnologydevelopment taskarepresented.

Itincludesradiationshieldingand materials,regenerativelifesupport,and EVA systems

development-As before,thepointswhere Lunar and Mars fullscaledevelopment decisions

can logicallybe made inthetechnologyprogram archighlighted.

In-Space Assembly and Processing

The in-spaceassembly and processingof largespacetransfervehicleswillpresenta

varietyof technologyadvanc_ development challenges,particularlyforthelargeLTV and
MTV and MEV acrobrakes.As shown on the accompanying schedule,extensiveground

testsmust occtu"beforeany orbitalwork can bc initiate&The vehicledesignswillbe driven

to a largedegree by theassembly facilitiesand technologiesseen asbeing availableduring

thevehiclebuildupsequence.

Summary

As noted before,many of the identifiedcriticaland high leverage technology

development issuesare common acrossallfourmajor vehicleoptions.Common critical

technology issuesincludelow-g human factors,autonomous system healthmonitoring,
long term cryogenic storageand management (H2, and possibly 02 for ECLSS), long
duration ECLSS, radiationsheltermaterial and configuration,and in-spaceassembly.

Unique cryo/AB technology issuesincludehigh energy a_robraking,and largeadvanced
space engine advanced development. Enhancing technologies include cryogenic

refrigeration(landertanks),O2-H2 RCS, advanced in-tpaceassembly techniques,higher

Ispcryogenicengines,and advanced structuralmaterialsdevelopment.
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Technology Development Concerns and Schedules. Nuclear Thermal

Propulsion (NTP)

Critical technology development issues relating to the reference NTP vehicle axe
presented in this section. Where applicable, the same charts are also included in the CAB,
CAP, NEP, and SEP IP&ED documents. The focus of this section will be to bring out.the
most important issues relating to the reference NTP vehicle, and to present preliminary
technology development schedules for these issues. The issues are presented here in outline
form, beginning with the most important, with accompanying schedules wherever
possible.

Nuclear Thermal Propulsion Technology Development
The most important a__a of technology and advanced development for this vehicle

option 'is the development of an integrated nuclear thermal propulsion system. A
preliminary schedule for the development of a _ system for a Mars vehicle is presented.
The schedule highlights both the point wbe_ a full scale development decision can be made
(year 5), and when the first flight article will be available to the vehicle program (year 14).
The largest single technology development challenge for the program will probably be test
facility design and development. The NERVA program nuclear tests were carried out in a
testbed facility open to the atmosphere. Any future test facility must be closed in order to
contain the fission products contained in the exhaust gasses. A scrubbing system must be
included to remove the fission products from the exhaust gas before it can be released into
the atmosphere. This facility may prove to be very costly to build and operate. Nuclear
thermal propulsion should offer a shorter developmem time than the other advanced
propulsion options (NEP, SEP), with si ._cantly better performance than the chemical
options. The major reactor technology :ssues axe high temperature fuels, efficient flit
design, fuel burnup, and nuclear safety issues.

Cryogenic Fluid Management
The large amounts of Hydrogen required for NTP Mars missions increases the

importance of technologies development relating to cryogenic fluid management and
storage. A preliminary technology schedule is presented for cryogenic fluid system
development for Mars mission applications. The cryogenic fluid systems schedule includes
Earth-based thermal control and selected component fluid management (tank pressure
control, liquid acquisition device effectiveness, etc.) tests, as well as planned flight
experiments to carry out system and subsystem development (selected components) and
verification/validation tests. Many of the technology issues will be answered during the
technology/advanced development work to be carried out for a Lunar program. The major
technology obstacles to be overcome by an N'rP storage system are in the areas of tankage
mass minlm_Tation and large scale (relative to Lunar) storage systems development,
integration, and orbital/flight operations (fluid transfer, acquisition, etc.).

Vehicle Avionics and Software
Although the technology r_adiness level of vehicle avionics and software is ahead

of many of the other technology arras listed in some respects, the demands on the system
in the areas of processing rate, accuracy, autonomous operation, and status/health
monitoring will drive technology and advanced development in areas not fully defined at
this point. Software requi_ments cannot be fully determined until the vehicle design is at a
more finished stage than the current levels. A preliminary schedule for autonomous
systems development is presented. The decision points for full scale development The
communications system options can be more fully defined before a final vehicle design is

J
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produced, however. A technology development schedule for advanced communications is
presented.

Life Support
A rchable, redundant long term life support system will be enabling for future

exploration missions. The degree of closure of, and the rehability of the system arc the
major technology development concerns. Low-g human factors determination will also be
an important technology consideration which will drive vehicle design. An integrated
schedule of the major areas of the life support technology development task arc presented.
It includes radiation shielding and materials, mgeneranve life support, and EVA systems
development. As before, the points wbere Lunar and Mars fall scale development decisions
can logically be made in the technology program are highlighted.

Aerobraking (low energy)
Low energy aerobraking will offer mission benefits in the areas of decreased

demands on the descent propulsion system, and improved cross-range capability. This area
presents a variety of issues for technology development including high strength to mass
ratio structural materials, high temperature thermal protection systems (although not as high
as for high energy aerobraking), avionics, assembly and operations, hypersonic test
facilities and computer codes, and Mars atmosphere prediction. High strength structural
material options include metal matrix composite, organic matrix composite, and advanced
carbon-carbon elements. Other structural considerations include load distribution and

attachment of payload for acrocapturc, and ETO launch and assembly of large structures.
Thermal protectionsystemsissuesinclucl_low mass ablativeand mradiaRug materials,and

strucnn'_/TP$integrationissues.The acrobrakemaneuver willplaceconsiderabledemands
on the vehicleavionicssystem with the need forrealtime trajectoryanalysis,and vehicle

guidance and conmal.The launch and assembly of the largeam'obrak_sn'ucun'cwillpresent

ground and space assembly and ops problems which willrequi_ technologyand advanced

development in both the areasof design and operations.Finally,computational analysis
and atmospbem predictioncapabilitywillbe criticalin the development of a man-rated
acrobrakcforMars use.A preliminarydevelopment scheduleforLunar and Mars acrobrak_

technology development ispresented.Itincludesthemajor milestonesforboth ground and

flighttesting.The pointswhere a Lunar and Mars fullscaledevelopment decisioncan be
made are alsohighlighmd on the schedule.Itshould be noted thatthisschedule was built

with high energy agrobrakinginmind, and willpossiblybe compressed tosonm degree ff
only low energy acrobrakingisdeveloped.

In-Space Assembly and Processing

The in-spaceassembly and pttr,.cssingof largespaceu'ansfervehicleswillpresenta

varietyof mchnology advanced development challenges,particularlyforthelargeLTV and
MEV acrobrakcs.As shown on the accompanying schedule,extensiveground testsmust

occur beforeany orbitalwork can bc initiated.The vehicledesignswillbe driventoa large

degn:c by theassembly facilitiesand te.,chnologiessccn asbeing availableduringthevehicle

buildup sequence.

Summary
As noted before,many of the identifiedcriticaland high leverage technology

development issuesarc common acrossallof the major vehicleoptions.Common critical

technology issuesincludelow-g human factors,autonomous system healthmonitoring,

long term cryogenic storageand management (H2, and possibly02 for ECLSS), long
duration ECLS$, radiationsheltermaterial and configuration,and in-space assembly.

Unique NTP technology issues center around nuclear reactor and engine systems

gtevelopment. Common enhancing technologiesinclude cryogenic refrigeration(lander
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tanks), O2-H2 RCS, advancedin-space assembly techniques,higher Isp cryogenic
engines,andadvancedstructuralmaterialsdevelopment.
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Technology Development Concerns and Schedules - Solar Electric

Propulsion (SEP)

Critical technology development issues rela&ng to the reference SEP vehicle are
presented in this section. Where applicable, the same charts are also included in the CAB,
CAP, NEP, and SEP I_P&ED documents. The focusof thissectionwillbe to bringout the

most important issuesrelatingto the referenceNTR vehicle,and to presentpreliminary

technologydevelopment schedulesfortheseissues.The issuesarepresentedhereinoutline

form, beginning with the most important, with accompanying schedules wherever

possible.

Solar Power System Technology Development

One of the two most importantareasof technology and advanced development for

thisvehicleoption isthe development of an integratedsolarelecn'icpower system.The

most importantareaof development forthe SEP optionisthe design,integration,and life

testingof a space qualifiedmulti-mcgawatt solar power system, consistingof high

effxciencysolararrays.Major challengestobe overcome in the achievement of a long life

efficientsystem lieinefficientsolararraydevelopment, and efficientpower processingand

deliverysystems.Long term lifetestingmust be carriedout forthepower system inorder

toverifylongterm system reliability.A relatedtechnology development challengeforthe

program may be testfacilitydesign and development. Solar elecn'icpropulsion offersa
potentialperformance which may bc superiortothe any of the otheradvanced propulsion

options,attheexpense ofa more costlyand lengthytechnologyand advanced development

program.

ElectricPropulsion PPU/Thruster Technology Development

The second major areaof technology development for the SEP is in largescale

electricpower processing unit(PPU), and thrusterdesign and development. The power

system technology development schedule presentedin the NEP IP&ED book includesa
timelineforelectricthrusterdesign.The development of long lifePPU/tl'n-ustersystems on

a largerscalethan currentlyavailable(MW levelthrustersneeded) isthe major area of

concern relatingto the SEP concept.Thruster lifetimeson the order of a year or more
(continuous)willbe r_l_ forthrusterson theMW levelinscale.Testfacilitiesmust be

developed which are capable of supportingthe long term lifetestsforthese high power
levelthrusmrs.Finally,high temperann'_power processingequipment must be developed

toincreasesystem efficiencyand reliability.

Life Support
A reliable,redundant long term lifesupport system willbe enabling for future

explorationmissions.The degree of closureof,and the reliabilityof the system are the

major technologydevelopment concerns.Low-g human factorsdeterminationwillalsobe

an important technology considerationwhich willdrive vehicle design.An integrated
scheduleofthe major areasofthelifesupporttechnology development taskarepresented.

Itincludesradiationshieldingand materials,regenerativelifesupport,and EVA systems

development. As before,thepointswberc Lunar and Mars fullscaledevelopment decisions

can logicallybe made inthetechnologyprogram archighlighted.

Aerobraking (low energy)
Low energy aerobraking willoffer mission benefitsin the areas of decreased

demands on the descentpropulsionsystem,and improved cmssrange capability.This area

presentsa varietyof issuesfortechnology development includinghigh strengthtomass
ratiostructuralmaterials,hightempcranne thermalprotectionsystems (althoughnot as high
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as for high energy aerobraking),avionics,assembly and operations,hypersonic test

facilitiesand computer codes,and Mars annospherc prediction.High strengthstructural
materialoptionsincludemetal man-ixcomposite,organicmatrixcomposite, and advanced
carbon-carbon elements. Other swuctural considerationsinclude load disu'ibutionand

attachment of payload foraerocaprure,and ETO launch and assembly of largesu'uctures.

Thermal pro_..ctionsystems issuesincludelow mass ablativeand remdiaRng materials,and

s_acture/TPS integrationissues.The aerobrakemaneuver willplaceconsiderabledemands

on the vehicleavionicssystem with theneed forrealtime n'ajectoryanalysis,and vehicle
guidance and conn'ol.The launchand assembly ofthelargeaerobrakesn'ucmrewillpresent

ground and space assembly and ops problems which willrequiretechnology and advanced

development in both the areasof design and operations.Finally,computational analysis

and atmosphere predictioncapabilitywillbe criticalin the development of a man-rated
aerobrakeforMars use.A preliminarydevelopment scheduleforLunar and Mars acrobrake

technology development ispresented.Itincludesthemajor milestonesforboth ground and

flighttesting.The pointswhere aLunar and Mars fullscaledevelopment decisioncan be
made are alsohighlightedon the schedule.Itshould be noted thatthisschedule was built

with high energy aerobrakinginmind, and willpossiblybe compressed tosome degreeif

only low energy aerobrakingisdeveloped.

Vehicle Avionics and Software

Although the technology readinesslevelof vehicleavionicsand softwareisahead

of many of theothertechnology areaslistedin some respects,the demands on the system

in the areas of processing rate,accuracy, autonomous operation, and status/health
monitoring willdrivetechnology and advanced development in areasnotfullydefinedat

thispoint.Softwarerequirementscannotbe fullydetermineduntilthevehicledesignisata

more finished stage than the cunent levels.A preliminary schedule for autonomous
systems development ispresented.The decisionpointsfor fullscaledevelopment The

communications system optionscan be more fullydefinedbeforea finalvehicledesignis

produced, however. A technology development scheduleforadvanced communications is

presented.The SEP vehiclemay notplacethesame levelof demand on theavionicssystem
in the areaof trajectoryanalysis,but willlikelyplacemore demands on the system in the
areasof smms and healthmonitoring,faultdiagnosis,and correction.

In-Space Assembly and Processing

The in-spaceassembly and processingoflargespacetransfervehicleswillpresenta

varietyof technologyadvanced development challenges,particularlyforthelargeLTV and

MEV aerobrakes,and SEP vehicle.The largesolararraystrucuae,along with the large

amount of wiring and elecn'icalconnections will present a variety of challenges in

technology development (e.g:in-spacewelding),and assembly operations(e.g.robotics).
As shown on the accompanying schedule,extensiveground testsmust occur beforeany

orbitalwork can be inifiaw,d.The vehicledesignswillbe driven to a largedegree by the

assembly facilitiesand technologiesseen as being availableduring the vehiclebuildup

sequence.Itshouldbe noted thatthe schedulewas not developed specificallyfor an NEP
vehicle.Advances derivedfrom thisdevelopment processalong with flightexperiencein

earliermissions leading up to thisevolutionaryscenariocould possibly acceleratethe

development planconsiderably.

Cryogenic Fluid Management
The levelof concern fortechnology development in the areasof cryogenicfluid

management and sma'agewillnotbe asfore_ propulsionvehiclesasforthehigh thrust

systems,althoughmany. of theme,asstillre.main".m_.ormntforthe SEP.vehicle.The .At.gon
(orZenon) proI:ellantutilizedfortheelectricpropulsmn systemwillbe m a cryogemc llquid

state,and will_quim long term s_orageand management technologylevelssimilartothose
J
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SECTION 6

PROPELLANT DEPOT TECHNOLOGY REQUIREMENTS

There arc a number of technology issuesthatmust bc resolved in order for a zcro-g cryogenic

propellantstoragedepottobc viable.Other technologyissueswarrantattentionbecausetheycould

.providc cost and operationaladvantages ifresolved. Most of the cryogenic fluidmanagement

issuespresentedheremust bc addressedwith orbitalflightexperiments. A summary ofthe depot

technology needs and theircriticalityratingsare presented in the charts "Depot Technology

Needs".

There are fivethermalcontrolissues:degradationof insulatingmaterialdue to exposure tospace

environment, development oflow thermalconductivitymaterials,degradationintheperformance

of thick Multi-Layer Insulation(IVfl.,I)due to launch effects,development of para to ortho

converters,and development of multiple/coupledVapor Cooled Shields('VCS).Understandingthe

degraxlationof the insulationdue tolaunch and long term space environment effectswillprevent

the need forovcrdesigning insulationsystems toensureadequate performance. Development of

low thermal conductivity materials can reduce the heat leak into cryogenic tanks through

penetration,such as supports,plumbing, and electricallines.Para/orthoconvc'rtcrsmake use of

the cndothermic process thathydrogen undergoes in changing from from itspara toortho form.

This process occurs by itselfas para hydrogen vapor warms up. However, itistoo slow tobc of

any use without the aid of a catalyst.By convertingvented hydrogen in a para/orthoconverter,

heat thatotherwise would have gone intothetank can bc absorbed and thendumped overboard.

Development of a multiple/coupled VCS would also provide for more efficientventing by

interceptingincoming heatwith thevent gas beforeitgoes overboard. All of thesethermalcontrol

issueshave thepayoffof reducingboil-offand/orinsulationsystem weight.

The issuesassociatedwith pressurecontrolan::predictingand increasingThermodynamic Vent

System (TVS) performance to allow efficientcontrolof tank pressure by venRng only vapor,

determining the amount offluidmixing requiredtocontrolstratification/rapidpressurerisein the

tank,and dc'vclopingrefrigerationorreliquifactionsystems to convertthe boil-offback toliquid.

A TVS is a device for controllingtank pressure. Liquid from the tank flows through a Joule-

Thompson valve where itspressure (and tcmpcrann_) arc reduced at constant cnthalpy. This

colder two phase fluidthen flows through a heat exchanger in the tank to absorb heat,thereby

reducing the tank pressure. The fluid exiting the TVS can then be supplied to a VCS, which is

embedded in the MLL Thus, a TVS and VCS combination provides a very efficient method of

6-1
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controlling tank pressure. If the fluid in the tanks stratifies, then venting can be delayed by mixing

the tank contents to bring the liquid and ullage into thermod.vnamic equilibnum. The minimum

amount of fluid mixing must be determined so that excess energy is not added to the tank contents.

Refrigeration or reliquffaction systems are an akcmative to venting, where the boil-off is eliminated

or reliquified. The drawback of these systems are that they require electrical power and they are

quite heavy. Also, reliabl'e, long-life space qualLfied systems do not exist. The payoff from these

pressure control issues is a large reduction in the amount of cryogens that would be vented/dumped

trying to control tank pressure in zero-g.

The liquid acquisition issues arc: pre.dictmg Liquid Acquisition Device ('LAD) performance and

determining the heat leak threshold where the screen dries out causing LAD failure. (Heat leak

enters the LAD through its supports.) This technology must be developed in order to be able to

reliably obtain single phase liquid from cryogenic depot tanks.

Pressurization issues include: determination of pressurant collapse in zero-g so that autogenous

pressurization systems can be properly sized and development of long life space qualified

cryogenic pumps and/or compressors (for both the autogenous pressurization system and transfer

• system). The amount of pressurant collapse in zero-g is not known and bounding calculations

show an order of magnitude uncertainty in the amount of prcssurant required with relatively high

liquid fi.U levels. The payoffs in this area arc weight and operational savings with properly sized

systems.

Advanced insu'umcntation needs development in the areas of." quantity gauging to determine liquid

inventories in zero-g, mass flow/quality metering to aid in determining the amount of propellant

transferred, leak detection devices that operate in space, and liquid/vapor sensors for determining

liquid/vapor interfaces in tanks and lines. Dcvclopmem of zero-g quantity gauges is essential for

determining storage depot invemories, whilc the other instruments simplify operations and

maintenance.

Liquid handling issues include: _g how to control liquid dynamics/slosh due m docking

and rcboost perturbations to the zero-g eavironmcm and dc_tion of fluid dumping/tank

inerting procedures for emergencies. The latter being extremely important for safety

considerations.

Liquid transfer technology issues arc: development of ef_cient tmusfer line and tank chflldown

methods, verification that acceptably high fill levels can be achieved with the no-vent flU process,

and determination of how to succcssfuZly fill a LAD in zero-g. The payoff of efficient chiUdown

6-2
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processes is propellant and possibly operational savings. The vcriz'ication of no-vent fill and LAD

fill procedures are essential for a zcm-g cryogenic storage depot.

The development of efficient O2/I-L2 thrusters for reboost offers a sizable weight savings over other

options (such as storable propellant thrusters) which have a lower specific impulse, Isp. These

thrusters would also eliminat_ the need for resupply of large quantifies of storable propellants.
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SECTION 7

PROPELLANT DEPOT COST ASSESSMENT

7.1 GROUNDRULES & ASSUMPTIONS

The cost section of this study is set up to evaluate the differences in Life Cycle Cost for various

mission scenarios. Each case is set up to accommodate the Minimum Science of FUll Science

manifest schedule. A summary is given in the charts "Cost Groundrules and Assumptions". All

costs arc ROM estimates for preliminary planning and trade study comparison purposes only. The

costs are presented in constant year 1990 millions of dollars. It is assumed that all of the

technology needed for the tasks outlined is available. The costs associated with ground facilities

are not included in any of the estimates. In addition, a probability of 100% launch success is

assumed.

A range of Earth-To-Orbit CETO) vehicle costs were given by Boeing Aerospace: $1,000/lb to

$3000/Ib. The $1,000flbfig'm'ewas used for thisstudy. The exceptionto the above isthe fast

launch associated with the depot. This launch only takes up the structuresand mechanisms,

without tanks or fuel,and ismuch lighter.A $150M launchvehiclecostallocationisused forthis

flight(in each appropriatemission scenario). The DDT&E costs include one shipsetof a

production articlefor design evaluationand test,and 0.75 of a shipsetfor initialspares. The

logisticsspareshave not been included in the costestimate. Other figuresused in the estimate

include;EVA rateat$201 K/bx,IVA rateat$23 K/Izr,learningcurve of 90%, and a ratecurve of

95%.

7.2 METHODOLOGY

The cost estimatingmethodology incorporatesa parametriccostmodel as the principaltoolfor

development of li.fe-cycle cost estimates, as shown in the chart "Cost Methodology". Parametric

models can bc used to dficicnfly produce credible cost estimates with limited input data and design

definitiontypicallyavailableearlyinthe studyprocess. The processused consistsof developing

costesRmating relationships(CEILs)foreach WBS clement usingour costand technicaldatabase,

gatheringspecifictechnicaldata,and enteringtheCERs and dataintothecostmodel

7-I



7.3 WORK BREAKDOWN STRUCIT.IR_

The Work Breakdown Sn-ucmr= CWBS) shows the fr'_nework used for this study, as shown in me

chart "Work Breakdown Sn'ucmre". It includes the basic structures for each defined element, the

associated production support (program management, systems engineering, tooling, integration &

checkout, and ground support equipment), and required operations. Costs associated with other

operational functions (mission operations, logistics, ground launch operations, etc.) are assumed

to be included in the ETO vehicle costs.

7.4 COST SCENAR/OS

The cost summaries are broken down by mission scenarios, as shown in the chart "Cost Scenarios

Considered". The Cryo All-Propulsive (CAP) MTV is used for the Minimum Science Scenario

and the Nuclear Thermal Rocket (NTR) MTV is used for the Full Science Scenario. Three options

were considered for each scenario. The particular manifests for each option, and sensitivity, is

discussed in the wade study analysis section.

7.5 LIFE CYCLE COST

The Life Cycle Costs (LCC) for the missions associated with the Minimum Science Scenario are

shown on the "Life Cycle Cost Overall Summary - Minimum Science with CAP" chart. The LCC

of thedirectlaunch of fullCAP fueltanksis$8,732M, which isthe most costeffectivecase. The

top-offfrom tankercase only differsby thecosttodevelop and produce the tankers,whereas the

top-offfrom depot case requiresdevelopment and production of the depot as well as additional

ETO launches.

The LifeCycle Costs (LCC) forthemissions assoc_ with the FullScience Scenm'ioare shown

on the "Life Cycle Cost Overall Summary - Full Science with NTR" chart. Again, the LCC of the

direct launch of full NTR fuel tanks is the most cost effective case at $16,540M.

The charttided "Life Cycle Cost Breakdown - Minimum Science with CAP" shows a funding

profile for the top-off from depot case suppon_g the Minimum Science Scenario. The IOC for

thiscase is2012 with the firstflightforde'potdelivery. The dip in the curve thatoccursin2018 is

due to the amount of time between depot tank delivery and the spread based on our beta

distributionfamily data base. The peak funding occursin 2012 at$I,490M. A breakdown of the

rectm-ingportionof thischartisshown inthefollowingchart,"Dcl_t Recurring Cost Breakdown

- Minimum Science with CAP". A similarLCC funding profilefor the FullScience Scenario,
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tanker top-off case is given in the "Life Cycle Cost Breakdown - Full Science with NTR" chart.

The IOC for this scenario is 2008, with the peak funding m 2018 at $1,360M.

7.6 COST SENSITIVITY TO MTV BOILOFF RATE

The boil-off sensinviry charts "Boiloff Sensitivities - Minimum Science (Depot)" and "Boiloff

Sensitivines - Minimum Science (Tank=)" summarize the results of the CAP fuel tank boil-off rote

. sensitivities for the depot and tanker top-off cases, respectively. The LCC of the baseline cases,

which are the same as seen on the "Life Cycle Cost Overall Summary - Minimum Science with

CAP" chart, are $15,294M for the depot and $9,612 for the t_ukcr, which arc the most cost

effective cases. The cost differences are mainly due to the d,ifference in the total number of ETO

launches, the number of fuel r,anks necessary, and the number of ycm's spre_l for the fuel tank

flights.

In addition, the difference between the LCC for the depot top-off case and tanker top-off case

becomes smaller as the MTV boil-off m_ increases. The approximate inm-ccpt is at a MTV boiloff

rate of 6.5%.

7.7 CONCLUSIONS AND RECOMMENDATIONS

The "Cost Conclusions and Recommendations" chart summarize the results. The direct launch of

the Mars Transfer Vehicle ranks is the most cost effective case in both the Minimum Science

Scenario and the Full Science Scenario. This is due to the fact that the direct launch case always

requires the least number of Earth-to-Orbit Vehicle launches. In addition, there arc some costs

which have been excluded from the ranker and depot cases (i.e. the ground production facilities

cost) which would increase the cost diffcr_ce.s. There is a higher technology risk associated with

the depot and tankm" cases and a greater risk for failures due to the number of fuel u-ansfers

required. The benefits, however, might outweigh the risks. By using a depot there would be a

decreased risk in mission completion and scheduled delay due to the storage of cx_ fuel for the

MTV. Fro'thor system definitions and _n._itivity studies arc recommended to determine optimized

depot and tanker scenarios.
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SECTION 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 CONCLUSIONS

The bottom line cost analysis results of this study show the direr Earth to Orbit launch of the Mars

Transfer Vehicle tanks full of propellants, adequate to accomplish the Mars mission without

topping-off with additional propellants prior to mission depam_, as being the most cost effective

option for both the Minimum and Full Science Scenarios. This is because the direct launch case

requires the least number of Earth-w-Orbit Vehicle launches in a success oriented approach to the

operations and cost analyses. However, there may be higher on-orbit risks involved in the direct

delivery and top-off delivery options be,cause of potential vehicle loss due to possible puncun'e of

the vehicle tankage by meteoroid or space debris impacts. Consideration of this risk may provide a

different outcome in favor of a propellant depot to support the Mars missions. It was also shown

that there is only a narrow margin of benefit in the direct launch and top-off options over the

propellant depot for the full science scenario. And as the Mars vehicle boiloff ra=s approach 6.5%

per month the propellant depot costs reach a break even point with the other propellant del/v_-_y

options.

Other conclusions reache_l in this surly r_lated to depot applications are as follows:

• The depot should be located in low Earth orbit

• The depot should be separate from Space Stmion F-'tee_m and opcmu_l in a co-orbiting mode

• The propellant transfer methods should include z_o-g mmsfer capability

It was apparent that two launch pads will be needed to support the full science missions bemuse

less than 90 day launch ccnm, s arc requizcd. Possible surg_ capabilities du_ to catasuophic failures

on-orbit also add to the need for at least two launch pads.

These conclusions arc smnmazizcd in tl_ chart "Orbital Propellant D_aot Study Conclusions".
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8-_ P,ECO_ATIONS

Furth_ system definitions and sensitivity studies ar_ recommended to determine optimized LEO

depot and tanker scenarios, These studies should include the non-success oriented aspects of

mission operasons and possible outcomes.

Mars depot requirements need to be further examined and evaluated to define appropriate

architectures for implementation of the Mars exploration program. These Mars depot definitions

should be exploited to reveal commonalities impacting low Earth orbit facilities.

These recommendations are summarized in the chart "Orbital Propellant Depot Study

Recommendations".

l
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for liquid oxygen storage for the chemical vehicles. Cryogenic storage issues relating to
ECLSS fluids and lander/ascent vehicle propellants will remain as well. A preliminary
technology schedule is presented for cryogenic fluid system development for Mars mission
applications. The cryogenic fluid systems schedule includes Earth-based thermal control
and selected component fluid management (tank pressure control, liquid acquisition device
effectiveness, etc.) tests, as well as planned flight experiments to carry out system and
subsystem development (selected components) and veriflcation/vaZidation tests. Many of
the technology issues will be answered during the technology/advanced development work
to be carried out for a Lunar program. The major technology obstacles to be overcome by
an NEP storage system are in the areas of high reliability long term thermal control systems
(particularily for the lander/ascent tanks), and orbital/flight operations (fluid transfer,
acquisition, etc.).

Summary
As noted before,some of the identifiedcriticaland high leverage technology

development issuesa_ common acrossallof the major vehicleoptions.Common critical

technology issuesincludelow-g human factors,autonomous system healthmonitoring,

long term cryogenic storageand management (H2, and possibly 02 for ECLSS), long

duration ECLSS, radiationsheltermaterial and configuration,and in-space assembly.

Unique SEP technology issuescenteraround efficientsolarpower systems and electric
thruster/PPU development. Common enhancing technologies include cryogenic

refrigeration(landertanks),O2-H2 RCS, advanced in-spaceassembly techniques,higher

Ispcryogenicengines,and advanced sn'ucturalmaterialsdevelopment.
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Technology Development Concerns and Schedules. Nuclear Electric

Propulsion (NEP)

Critical technology development issues relating to the reference NEP vehicle axe
presented in this section. Where applicable, the same charts are also included in the CAB,
CAP, NTR, and SEP IP&ED documents. The focus of this section will be to bring out the
most important issues relating to the reference NEP vehicle, and to present preliminary
technology development schedules for these issues. The issues are presented here in outline
form, beginning with the most important, with accompanying schedules wherever
possible.

Nuclear Power System and Shielding Technology Development
One of the two most important areas of technology and advanced development for

this vehicle option is the development of an integrated nuclear electric power system. A
preliminary schedule for the development of a NEP propulsion system for a Mars vehicle is
presented, which includes an integrated timeline for both of these technology development
concerns. The schedule highlights both the point where a full scale development decision
can be made (year 6), and when the first flight article will be available to the vehicle
program (year 17). The most important area of development for the NEP option is the
design, integration, and life testing of a space qualified multi-megawatt nuclear power
system, capable of a 10 year lifetime. Major challenges to be overcome in the achievement
of a long life efficient system lie in high temperature materials, liquid metal power
conversion system development, and reactor design. In order to increase the efficiency of
the power system, higher system temperatures are required. Materials capable of
continuous operation above 1600K will be needed inside the reactor, and above 1500K in
the conversion system components. Reactor design studies will focus on such technology
concerns as high temperature fuel development, reactor and fuel designs with high burnup
capability, high reliability control systems, and safmg issues for flight operations. Long
term life testing must be carried out for the power system (including reactor), to verify long
term system reliability. A related technology development challenge for the program will
probably be test facility design and development. Past space program nuclear tests were
carried out in a testbed facility open to the atmosphere. Future test facilities must be closed
in order to contain any fission products escaping from the system, as well as contain any
perceived accident. This facility may prove to be very costly to build and operate. Nuclear
electric propulsion offers a potential performance superior to the chemical and NTR
vehicles, at the expense of a more cosily and lengthy technology and advanced
development program.

Electric Propulsion PPU/Thruster Technology Development
The second major area of technology development for the NEP is in large scale

electric power processing unit (PPU), and thruster design and development. The
developmentoflong lifePPUlthrustcrsystemson a largerscalethancurrentlyavailable
(MW levelthrustersneeded)isthemajor areaof concernrelatingtothe NEP concept.
Thruster lifetimes on the order of a year or more (continuous) will be required for thrusters
on the MW level in scale. Test facilities must be developed which are capable of supporting
the long term life tests for these high power level thrusters. Finally, high temperature
power processing equipment must be developed to increase system efficiency and
reliability.

Life Support
A reliable, redundant long term life support system will be enabling for future

exploration missions. The degree of closure of, and the reliability of the system are the

D615-10026-1
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major technology development concerns. Low-g human factors determination will also be
an important technology consideration which will drive vehicle design. An integrated
schedule of the major areas of the life support technology development task are presented.
It includes radiation shielding and materials, regenerative life support, and EVA systems
development. As before, the points where Lunar and Mars full scale development decisions
can logically be made in the technology program are highlighted.

Aerobraking (low energy)
Low energy aerobraking will offer mission benefits in the areas of decreased

demands on the descent propulsion system, and improved cross'range capability. This area
presents a variety of issues for technology development including high slrcngth to mass
ratiostructuralmatm'ials,high temperann'¢thermal protection systems (althoughnot as high

as for high energy aerobraking), avionics, assembly and operations, hypersonic test
facilities and computer codes, and Mars atmosphere prediction. High strength structural
material options include metal matrix composite, organic mawix composite, and advanced
carbon-carbon elements. Other structural considerations include load distribution and

attachment of payload for acrocaptum, and ETO launch and assembly of large structures.
Thermal protection systems issues include low mass ablative and m-adiating materials, and
su'uctm_/TPS integration issues. The acrobrake maneuver will place considerable demands

on the vehicle avionics system with the need for real time trajectory analysis, and vehicle
guidance and control. The launch and assembly of the large acrobrak¢ structure will present
ground and space assembly and ops problems which will require technology and advanced
development in both the areas of design and operations. Finally, computational analysis
and atmosphere prediction capability will be critical in the development of a man-rated
acrobrakc for Mars use. A prelimina_ development schedule for Lunar and Mars acrobrakc
technology development is presented, h includes the major milestones for both ground and

flight testing. The points where a Lunar and Mars full scale development decision can be
made are also highlighted on the schedule. It should be noted that this schedule was built

with high energy aerobraking in mind, and will possibly be compressed to some degree ff
only low energy acrobraking is developed.

Vehicle Avionics and Software

Although the technology readiness level of vehicle avionics and software is ahead
of many of the other technology areas listed in some respects, the demands on the system

in the areas of processing rate, accuracy, autonomous operation, and status/health
monitoring will drive technology and advanced development in areas not fully defined at
this point. Softwar_ req_nts cannot be fully dem-mined until the vehicle design is at a
more finished stage than the current levels. A preliminary schedule for autonomous
systems development is presented. The decision points for full scale development The
communications system options can be more fully defined before a final vehicle design is
produced, however. A technology development schedule for advanced communications is
presented. The NEP vehicle may not place the same level of demand on the avionics system

in the area of trajectory analysis, but will likely place more demands on the system in the
areas of stares/health momtoring, and autonomous operation, fault diagnosis, and
correction.

In.Space Assembly and Processing

The in-space assembly and processing of large space transfer vehicles will present a

variety of Ir_hnology advanced development challenges, particularly for the large LTV and
MEV aerobrakes, and NEP vehicle. The large radiator structure, along with the many liquid

metal pipe high pressure joints which must be made in orbit will present a variety of
challenges in technology development (e.g. in-space welding), and assembly operations
(e.g. robotics). As shown on the accompanying schedule, extensive ground tests must

D615-10026-1 1014



occurbeforeany orbital work can be iniuated. The vehicle designs will be driven to a large
degreeby theassembly facilitiesand technologiesseenas being availableduringthevehicle

buildup sequence.Itshould be noted thatthe schedule was not developed specificallyfor
an NEP vehicle.Advances derived from thisdevelopment process along with flight

experience in earliermissions leading up to thisevolutionary scenario could possibly
acceleratethedevclcrpmcntplan considerably.

Cryogenic Fluid Management

The levelof concern for technology development in the areas of cryogenic fluid

management and storage will not be as for elccu-ic propulsion vehicles as for the high thrust
systems, although many of the areas still remain important for the NEP vehicle. The Argon

(or Zcnon) propellant utilized for the electric propulsion system will be in a cryogenic liquid
state, and will require long term storage and management technology levels similar to those
for liquid oxygen storage for the chemical vehicles. Cryogenic storage issues relating to
ECLSS fluids and lander/ascent vehicle propellants will remain as well. A preliminary
technology schedule is presented for cryogenic fluid system development for Mars mission
applications. The cryogenic fluid systems schedule includes Earth-based thermal control

and selected component fluid management (tank pressure control, liquid acquisition device
effectiveness, etc.) tests, as well as planned flight experiments to carry out system and
subsystem development (selected components) and verification/validation tests. Many of
the technology issues will be answered during the technology/advanced development work
to be carried out for a Lunar program. The major technology obstacles to be overcome by
an NEP storage system are in the areas of high reliability long term thermal control systems

(particularily for the lander/ascent tanks), and orbital/flight operations (fluid transfer,
acquisition, etc.).

Summary

As noted before, some of the identified critical and high leverage technology
development issuesare common acrossallof the major vehicleoptions.Common critical
technology issuesinclude low-g human factors,autonomous system healthmonitoring,

long term cryogenic storage and management (H2, and possibly O2 for ECLSS), long

duration ECLSS, radiationsheltermaterial and configuration,and in-space assembly.

Unique NEP technology issues center around nuclear power systems and clcctric

thruster/PPU development. Common enhancing technologies include cryogenic

refrigeration(landertanks),O2-I--12RCS, advanced in-spaceassembly techniques,higher

Isp cryogenic engines, and advanced structural materials development.
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Conclusions

Conclusions of the specific Level II trades were presented in the summary and
with each trade description. The Level 1I trades, taken as a whole, illuminated
sensitivities and leverages of systems and technologies. They provide the
"knowledge base as to how systems and technologies perform and how they can be
integrated into mission systems. These trades, together with the vehicle concepts
described in the other volumes of this document, are the basis for in-space
transportation architecture synthesis.

A significant result of the study is that selection of a preferred mission
architecture depends on overall mission objectives and activity level. More
ambitious programs justify greater investment in technology advancement and in
development of advanced systems. Because mission objectives and activity level
have not yet been decided, and because of uncerteinties in costs and performance
of many of the technologies, final architecture selections cannot be made now. A
program strategy for technology advancement and initial development is needed.

Top-level recommendations for SEI program strategy were developed. These

recognize that lunar and Mars exploration will start with modest objectives and
evolve as a result of early mission achievements and scientific findings. An
ambitious lunar program could significantly defer human Mars missions under
likely funding constraints. Similarly, an ambitious Mars program could limit
lunar activities to high-priority scientific objectives.

Our recommended SEI program strategy is evolutionary, allows changes in
emphasis, and keeps options open. This strategy is expressed as architecture-level
technology and program recommendations:

(1) Begin the manned lunar program with a tandem-direct expendable system.

(2) Invest in cryogenic storage and management technology and in a 30K-class
advanced expander cryogenic engine with I0:1 or better throttling capability.
These activities are candidates for advanced development.

(3) Baseline nuclear thermal rocket propulsion for Mars. Initiate a technology
advancement program with emphasis on (a) high-performance fuels and (b) full-
containment ground test facilities.

(4) Accelerate aerobraking technology for Mars aerocapture as a backup to the
nuclear rocket, targeting a decision between the two in the 1996-2000 time
frame.

D615-10026-1 1023



(5) Perform aerobrake tests on the LTV booster, to put the technology on the
shelf for Mars application.

(6) Designate solar-electric propulsion (SEP) as a "dark horse" for Mars

transportation, and conduct a technology advancement effort aimed at removing
the barriers to a high-performance, economic SEP system.

(7) Continue the present emphasis of the nuclear space power program on near-
term systems applicable to planet surface power, but augment with (a) further
studies to better understand the probable cost of nuclear power systems suitable
for electric propulsion, and (b) modest funding of high-leverage high-
performance power conversion technology.

Additional information on these recommendations may be found in the final
technical report for the study.
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Mars program scenarios

This document describes the strategy, scenario, and some

assumptions for each of three Mars program architectures. These

scenarios were used to develop mission manifests which Madison

Research will _is inputs to their program cost models. Several

questions remain. Can the specified number of MEV flights in each

case really provide all the equipment needed to support the specified

crew for the stated duration? What is the cargo of the MEV's whose

cargoes are currently listed as "stuff"? Despite these questions,

enough detail is present to see the broad outlines of the programs,
and thus to estimate their relative cost.

A general assumption has been that the basic MEV can carry six crew

to the surface, but that it cannot support more than four for

protracted periods, e.g. 30 days.

Minimum science nrograln

The strategy of this program is to visit diverse Martian surface sites

for brief human exploration, augmented by telerobotic

reconnaissance. The program has three missions, identical but for

the sites visited by each. A mission departs at every other

conjunction opportunity, with the first departure in 2015. The

propulsion technology is cryogenic all propulsive (CAP), and 100% of

the hardware is expended in each mission.

The crew size is six per mission. All crew members visit the Martian

surface, some perhaps twice: three or four crew shortly after arrival

in Mars orbit, and three or four shortly before departure for Earth.

The first surface crew stays 30 days, during which the cTew explores

locally using an unpressurized rover(s). After their return to orbit,

the rover(s) telerobotically explores over a greater range, gathering

samples. The second surface crew arrives in the most interesting

area discovered by the rover(s). They conduct detailed local

examinations and select the most valuable samples gathered by the

rover(s) for return to Earth.

(Note that the above plan is not the absolute minimum. The cost of

the mission could be reduced by using only one MEV. For maximum

science return, the landing should still follow unmanned preferably

telerobotic - reconnaissance to select the best site. This can be

accomplished by sending a teleoperated rover in a small landing

vehicle, followed a year later by an MEV. The choice is whether to

D615-10026-1 _:" _'_ i:O) FIL&ht_-i,
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send all six crew, which may shorten the surface stay or call for a

bigger (and more expensive) MEV, or to send only part of the crew,
which could be bad for morale. The two-MEV scheme was chosen to

avoid this dilemma and to provide redundancy.)

Full Science Scenario

The full science program strategy is to estabIish long-term bases for

far-ranging surface exploration. The program has six missions before

2025. All follow conjunction trajectories, all use NTR propulsion (Isp

1050), and the MTV is reused.

Mission 1

The first mission departs in 2009 with a crew of six. Its surface

itinerary is like a mission from the minimum science program: an

early visit leaves a t_lerobotic rover for broad reconnaissance, and a

second visit lands at the most interesting site. The site for the

second visit is selected for its suitability as a base location. The

second visit surveys the site, plants beacons, etc., and selects samples

from the rover for return to Earth.

Mission 2

The second mission departs in 2013 with six crew, reusing the MTV

from the first mission. It has three MEVs: one to deliver a hab

module for six people, one to deliver power systems and

consumables for the hab,. and one to deliver the six crew and a

pressurized scientific rover. The crew stays on the surface for about

a year, deploying and outfitting' the habitat, then exploring in the

rover.

Mission 3

The third mission departs in 2015 with six crew, using an all-new

MTV (the first MTV is still at Mars). The three MEV's carry an

additional hab/lab module, consumables, a crane to unload modules

from the landers, scientific equipment, and the crew. The crew stays

down one year installing the new module, moving the old module

from its MEV to the surface, mating the two modules, and exploring.

Mission 4

The fourth mission departs in 2019. It uses the original MTV, but

has a new habitat for its twelve crew. One of its three MEV's carries

a CELSS module to make the base more self-sufficient. Another MEV

carries 6 crew and a new pressurized rover. The third MEV carries
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six more crew, consumables, and ISRU equipment. The crew install

and operate the new module and equipment, as well as continue

exploration and science.

Mission 5

Mission five departs in 2021. It uses the second MTV with a new

hab for twelve crew. This mission has two regular MEV's and two

mini-MEV's. The minis make two visits to the region of a second

possible base. The first mini explores locally and leaves a telerobotic

rover; the second visits the best site found and surveys it for a new

base. The mini-MEV visits and the MEV surface stays can be timed

to give each crew member a visit to both regions of the planet.

(This mission plan is questionable. Only mission 5 uses a mini-MEV;

perhaps the mass savings do not justify development of this new

piece of hardware for so limited a role.)

Mission 6

The sixth mission departs in 2023. It uses the first MTV with a new

reactor (each reactor is good for three missions). There are twelve

crew and four full size MEV's. Six crew and one MEV visit the

original base, performing maintenance and continuing the regional

exploration. The other six crew and the three other MEV's land at

the new base site, essentially repeating mission 2 to establish a base

at the new location and begin exploration.

i

SettlemenI Scenario
I

The settlement program strategy is to quickly establish the

infrastructure needed to economically support large numbers of

people on Mars. Science is supported as a secondary objective. The

program includes seven missions before 2020, all using conjunction

trajectories. The first two missions use expendable CAP technology,

but all subsequent missions use NEP (Isp of 10,000 was assumed).

Reusable MEVs (RMEV) are used beginning with the fifth mission.

Mission 1

The first mission departs in 2007. It carries a crew of six and two

MEV's. The first MEV lands for 30 days with 3 or 4 crew and an

unpressurized rover. The rover telerobotically explores the area
after the MEV ascends. The second MEV lands later in the most

promising base site uncovered by the rover. The second surface
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crew surveys the site, sets beacons, and collects samples from the

rover.

Mission 2

The second mission departs in 2009 with six crew and three MEV's.

One MEV carries a 6-person habitat. One carries a nuclear power

plant, some consumables, and ISRU experiments. The third carries
the crew and a pressurized bulldozer/backhoe that can serve as a 50

km rover. The crew installs the power plant (essential for frequent

use of the bulldozer) and habitat, then begin" civil engineering

experiments and site preparation for later missions. They also carry

out some exploration and science, time permitting. The crew stays

on the surface for a year.

Mission 3

Mission three departs in 2011. The NEP vehicle carries twelve crew

and four MEV's. Cargo delivered includes a constructible habitat,

construction equipment, consumables, and a 1000 km rover. The

rover can serve as a habitat for part of the crew until the

constructible habitat is ready for occupants. The crew stays on the

surface for over a year.

Mission 4

The fourth mission departs in 2013, delivering twelve ciew and four

MEV's aboard a second NEP vehicle (the first is still at Mars when

mission four departs). This mission delivers a CELSS system,

consumables and spares, and lots of ISRU equipment. The ISRU

emphasis is on atmosphere distillation for nitrogen and water, on

atmosphere cracking for oxygen and fuels, and on structural

materials. The crew stays for over a year.

Mission 5

Mission five departs in 2015 with eighteen crew, three MEV's, and

one RMEV. It delivers additional CELSS equipment, ISRU equipment,

and an RMEV servicer. The crew installs the new equipment, refuels

and reflies the RMEV, and leaves twelve people to stay on Mars until

the next mission. The RMEV will have several flights left in its

service life; it can be used as a rescue vehicle for long-range rover

missions.
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Mission 6

The first truly large cargo delivery, mission six delivers eighteen

crew and two RMEV's. The RMEV's get five flights each, so the

mission delivers 250 tons of cargo (currently not well specified) to

the surface. The twelve crew left from the previous mission return

to Earth, and a new set of twelve stay over until the next mission.

Mission 7

Mission seven is the first "steady state" mission, requiring no new

equipment for the MTV besides the usual replacement of thrusters,

propellant, and consumables. The mission requires only seven I-ILLV

launches of hardware. It delivers 250 tons and eighteen crew to

Mars, expends two RMEV's, and returns twelve people to Earth (only

six, perhaps less, are needed to safely operate the MTV). Replacing a

reactor on every third flight, this pattern can be maintained

indefinitely, settling Mars at a rate of six to twelve more people
every two years.

(The tremendous cargo capacity of the last two missions suggests
that the scenario should be replanned for earlier use of R.M_V's and

in situ propellant. This could greatly accelerate the arrival of large
numbers of crew and equipment.)

|
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